Foundation punch-through in clay with sand: centrifuge modelling
View / Open Files
Authors
Ullah, SN
Stanier, S
Hu, Y
White, D
Publication Date
2017-10-01Journal Title
Géotechnique
ISSN
0016-8505
Publisher
ICE Publishing
Volume
67
Issue
10
Pages
887-889
Language
en
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Ullah, S., Stanier, S., Hu, Y., & White, D. (2017). Foundation punch-through in clay with sand: centrifuge modelling. Géotechnique, 67 (10), 887-889. https://doi.org/10.1680/jgeot.16.p.100
Abstract
This paper is concerned with the vertical penetration resistance of conical spudcan and flat footings in layered soils. Centrifuge tests are reported for a clay bed with strength increasing with depth interbedded with dense and medium dense sand. Both non-visualising (full-model) and visualising (half-model) tests were conducted with high-quality digital images captured and analysed using the particle image velocimetry technique for the latter. The load–displacement curves often show a reduction in resistance on passing through the sand layers, which creates a risk of punch-through failure for the foundations when supporting a jack-up drilling unit. For a given foundation, the peak punch-through capacity (qpeak) is dependent on the thickness of both the overlying clay and the sand layer. The failure mechanism associated with the peak resistance in the sand layer involves entrapment of a thin band of top clay above the sand layer that subsequently shears along an inclined failure surface before being pushed into the underlying clay. The top clay height when normalised by the foundation diameter affects the soil failure pattern in this layer and along with the sand layer thickness controls the severity of the punch-through failure (i.e. the additional penetration before the resistance returns to the peak value). Comparisons are made with current industry guidelines for predicting qpeak and the risk of punch-through failure for sand overlying clay. These methods are shown to be conservative in their prediction of qpeak but inconsistent in predicting punch-through.
Keywords
Patient Safety
Sponsorship
The research presented here forms part of the activities of the Centre for Offshore Foundation Systems (COFS), currently supported as a node of the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering (grant CE110001009) and through the Fugro Chair in Geotechnics, the Lloyd's Register Foundation Chair and Centre of Excellence in Offshore Foundations and the Shell EMI Chair in Offshore Engineering (held by the fourth author). The authors would like to acknowledge the additional support from the Australian Research Council (ARC) through Discovery Project No. 1096764. Thanks are due to the UWA drum centrifuge technicians Bart Thompson and Greg Outridge.
Identifiers
External DOI: https://doi.org/10.1680/jgeot.16.p.100
This record's URL: https://www.repository.cam.ac.uk/handle/1810/289821
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk