Show simple item record

dc.contributor.authorUllah, SNen
dc.contributor.authorStanier, Samuelen
dc.contributor.authorHu, Yen
dc.contributor.authorWhite, Den
dc.date.accessioned2019-02-22T14:46:43Z
dc.date.available2019-02-22T14:46:43Z
dc.date.issued2017-10-01en
dc.identifier.issn0016-8505
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/289821
dc.description.abstractThis paper is concerned with the vertical penetration resistance of conical spudcan and flat footings in layered soils. Centrifuge tests are reported for a clay bed with strength increasing with depth interbedded with dense and medium dense sand. Both non-visualising (full-model) and visualising (half-model) tests were conducted with high-quality digital images captured and analysed using the particle image velocimetry technique for the latter. The load–displacement curves often show a reduction in resistance on passing through the sand layers, which creates a risk of punch-through failure for the foundations when supporting a jack-up drilling unit. For a given foundation, the peak punch-through capacity (qpeak) is dependent on the thickness of both the overlying clay and the sand layer. The failure mechanism associated with the peak resistance in the sand layer involves entrapment of a thin band of top clay above the sand layer that subsequently shears along an inclined failure surface before being pushed into the underlying clay. The top clay height when normalised by the foundation diameter affects the soil failure pattern in this layer and along with the sand layer thickness controls the severity of the punch-through failure (i.e. the additional penetration before the resistance returns to the peak value). Comparisons are made with current industry guidelines for predicting qpeak and the risk of punch-through failure for sand overlying clay. These methods are shown to be conservative in their prediction of qpeak but inconsistent in predicting punch-through.
dc.description.sponsorshipThe research presented here forms part of the activities of the Centre for Offshore Foundation Systems (COFS), currently supported as a node of the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering (grant CE110001009) and through the Fugro Chair in Geotechnics, the Lloyd's Register Foundation Chair and Centre of Excellence in Offshore Foundations and the Shell EMI Chair in Offshore Engineering (held by the fourth author). The authors would like to acknowledge the additional support from the Australian Research Council (ARC) through Discovery Project No. 1096764. Thanks are due to the UWA drum centrifuge technicians Bart Thompson and Greg Outridge.
dc.languageenen
dc.publisherICE Publishing
dc.titleFoundation punch-through in clay with sand: centrifuge modellingen
dc.typeArticle
prism.endingPage889
prism.issueIdentifier10en
prism.publicationDate2017en
prism.publicationNameGéotechniqueen
prism.startingPage887
prism.volume67en
dc.identifier.doi10.17863/CAM.37062
dcterms.dateAccepted2016-11-25en
rioxxterms.versionofrecord10.1680/jgeot.16.p.100en
rioxxterms.versionAM*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-10-01en
dc.contributor.orcidStanier, Samuel [0000-0001-5671-2902]
dc.identifier.eissn1751-7656
rioxxterms.typeJournal Article/Reviewen
cam.issuedOnline2017-03-02en
dc.identifier.urlhttps://www.icevirtuallibrary.com/doi/10.1680/jgeot.16.P.100en
rioxxterms.freetoread.startdate2018-03-02


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record