Repository logo
 

Lean Flame Root Dynamics in a Gas Turbine Model Combustor

Accepted version
Peer-reviewed

Change log

Abstract

A swirl-stabilised flame close to blow-off conditions in a gas turbine model combustor is investigated using large eddy simulation. The sub-grid combustion is modelled using a presumed probability density function approach along with flamelets. Good comparisons between the computed and measured statistics are observed. This allows for a detailed investigation of the flame behaviour. Two distinct stages are noted for the flame behaviour. The flame has a steady and stable flame root anchored near the entrance to the burner, yielding a "V" shaped flame in Stage 1, and a transient lift-off event is observed in Stage 2. These two stages switch from one to the other, giving the unstable flame behaviour, as observed in the experimental studies. Further analysis of the simulations shows that large-scale scalar mixing plays a prominent role in the stabilisation of the flame and the entrainment of inflammable mixtures near the flame root location initiates the lift-off event.

Description

Keywords

Flame blow-off, flame root, large eddy simulation, lift-off, partially premixed flame

Journal Title

Combustion Science and Technology

Conference Name

Journal ISSN

0010-2202
1563-521X

Volume Title

191

Publisher

Informa UK Limited
Sponsorship
EPSRC (1619171)
Engineering and Physical Sciences Research Council (EP/K025791/1)
EPSRC DTP studentship (RG80792)