Repository logo
 

Scalable electrochromic nanopixels using plasmonics.

Accepted version
Peer-reviewed

Change log

Authors

Lin, Qianqi 
Liang, Hsin-Ling 

Abstract

Plasmonic metasurfaces are a promising route for flat panel display applications due to their full color gamut and high spatial resolution. However, this plasmonic coloration cannot be readily tuned and requires expensive lithographic techniques. Here, we present scalable electrically driven color-changing metasurfaces constructed using a bottom-up solution process that controls the crucial plasmonic gaps and fills them with an active medium. Electrochromic nanoparticles are coated onto a metallic mirror, providing the smallest-area active plasmonic pixels to date. These nanopixels show strong scattering colors and are electrically tunable across >100-nm wavelength ranges. Their bistable behavior (with persistence times exceeding hundreds of seconds) and ultralow energy consumption (9 fJ per pixel) offer vivid, uniform, nonfading color that can be tuned at high refresh rates (>50 Hz) and optical contrast (>50%). These dynamics scale from the single nanoparticle level to multicentimeter scale films in subwavelength thickness devices, which are a hundredfold thinner than current displays.

Description

Keywords

1007 Nanotechnology, Nanotechnology, Bioengineering

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

5

Publisher

American Association for the Advancement of Science (AAAS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/N016920/1)
Engineering and Physical Sciences Research Council (EP/L027151/1)
Engineering and Physical Sciences Research Council (EP/L015978/1)
European Research Council (639088)
Engineering and Physical Sciences Research Council (EP/P029426/1)
Engineering and Physical Sciences Research Council (EP/G060649/1)
European Research Council (790518)
Relationships
Is supplemented by: