Repository logo
 

Investigating the mechanisms of cell competition in mammals using in vitro systems


Type

Thesis

Change log

Authors

Goschorska, Maja 

Abstract

Cell competition leads to elimination of a viable cell population, by fitter cells. Despite over forty years of research, the molecular mechanisms of competition in mammals are poorly understood. During my PhD I have investigated the mechanisms of competition by exploring an established mammalian cell culture system, in which wild-type MDCK cells eliminate scribble-deficient cells, and I have also developed a novel cell culture system to model mammalian competition. My work contributed to the discovery that scribble-deficient cells are eliminated not by biochemical exchange among cells, but by mechanical compaction. We termed this phenomenon mechanical competition. I employed transcriptional profiling to determine the molecular signature of mechanical losers, and identified activation of p53 signalling as their hallmark. My colleagues and I then demonstrated that elevation of p53 is both necessary and sufficient to trigger mechanical competition. In further investigating the mechanisms of mechanical competition, I found that compaction activates ROCK in scribble-deficient cells, and that this is required for their elimination. Inhibition of Src signalling in mechanical losers also protected them form out-competition, and integrin signalling is another pathway likely involved in mechanical competition. While investigating p53 competition, we observed that p53-high and p53-low cells engage in directional migration, with p53-high cells always at the migrating front. As a side-project, I investigated the role of p53 in directional migration, by exploring an established model with a single leader cell and multiple followers. We established a method to generate multinucleated leaders on demand. By creating leaders from p53-deficient cells, I established that p53 signalling is required for some, but not all multinucleated cells to trigger collective migration, thus implicating p53 signalling in a type of migration involved in wound healing. Finally, I successfully modelled p53-driven mechanical competition in a differentiated primary tracheal epithelial cell culture, thereby establishing a novel system to study mammalian competition, and also proving that p53 competition is conserved between different mammalian epithelia. Considering the involvement of p53, mechanical competition may play a major role in cancer.

Description

Date

2017-01-04

Advisors

Piddini, Eugenia
Rawlins, Emma Louise

Keywords

cell competition, cell biology, p53, cell culture, cancer research, Scribble

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Fully funded by the Cambridge Cancer Centre

Collections