Show simple item record

dc.contributor.authorMustazzolu, Aen
dc.contributor.authorVenturelli, Len
dc.contributor.authorDinarelli, Sen
dc.contributor.authorBrown, Ken
dc.contributor.authorFloto, Andresen
dc.contributor.authorDietler, Gen
dc.contributor.authorFattorini, Len
dc.contributor.authorKasas, Sen
dc.contributor.authorGirasole, Men
dc.contributor.authorLongo, Gen
dc.date.accessioned2019-03-29T14:25:49Z
dc.date.available2019-03-29T14:25:49Z
dc.date.issued2019-03en
dc.identifier.issn0066-4804
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/290969
dc.description.abstractThe development of antibiotic-resistant bacteria is a worldwide health-related emergency that calls for new tools to study the bacterial metabolism and to obtain fast diagnoses. Indeed, the conventional analysis time scale is too long and affects our ability to fight infections. Slowly growing bacteria represent a bigger challenge, since their analysis may require up to months. Among these bacteria, Mycobacterium tuberculosis, the causative agent of tuberculosis, has caused more than 10 million new cases and 1.7 million deaths in 2016 only. We employed a particularly powerful nanomechanical oscillator, the nanomotion sensor, to characterize rapidly and in real time tuberculous and nontuberculous bacterial species, Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium abscessus, respectively, exposed to different antibiotics. Here, we show how high-speed and high-sensitivity detectors, the nanomotion sensors, can provide a rapid and reliable analysis of different mycobacterial species, obtaining qualitative and quantitative information on their responses to different drugs. This is the first application of the technique to tackle the urgent medical issue of mycobacterial infections, evaluating the dynamic response of bacteria to different antimicrobial families and the role of the replication rate in the resulting nanomotion pattern. In addition to a fast analysis, which could massively benefit patients and the overall health care system, we investigated the real-time responses of the bacteria to extract unique information on the bacterial mechanisms triggered in response to antibacterial pressure, with consequences both at the clinical level and at the microbiological level.
dc.description.sponsorshipG.L., S.D., and M.G. were funded by the Consiglio Nazionale delle Ricerche, short-term mobility program no. CUP B53C17001680005. S.K., G.D., and L.V. were funded by the Swiss National Grants 200021-144321 and 407240_167137, the Gebert Rüf Stiftung GRS-024/14, and NASA NNH16ZDA001N-CLDTCH.
dc.languageengen
dc.publisherAmerican Society for Microbiology
dc.subjectantibiotic responseen
dc.subjectcollective movementsen
dc.subjectfast characterizationen
dc.subjectmetabolic activityen
dc.subjectmycobacteriaen
dc.subjectnanomotion sensoren
dc.subjectsusceptibilityen
dc.titleA Rapid Unraveling of the Activity and Antibiotic Susceptibility of Mycobacteria.en
dc.typeArticle
prism.numbere02194-18en
prism.publicationDate2019en
prism.publicationNameAntimicrobial Agents and Chemotherapyen
prism.volume63en
dc.identifier.doi10.17863/CAM.38148
dcterms.dateAccepted2018-12-14en
rioxxterms.versionofrecord10.1128/AAC.02194-18en
rioxxterms.versionAM*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2019-03en
dc.contributor.orcidFloto, Andres [0000-0002-2188-5659]
dc.identifier.eissn1098-6596
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idCystic Fibrosis Trust (SRC 010)
pubs.funder-project-idFondation Botnar (Project 603)
cam.issuedOnline2019-02-26en
rioxxterms.freetoread.startdate2019-08-26


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record