Repository logo
 

A Plasticity Theory Approach for the Stability Analysis of Vertical Layers of Concrete in the Fresh State

Accepted version
Peer-reviewed

Type

Conference Object

Change log

Authors

Lees, JM 

Abstract

The industrial production of cement is currently responsible for around 5% of global CO2 emissions. Hence, the development of technologies aimed at minimizing the use of cement in concrete structures, while preserving their strength and durability properties, plays a vital role in the reduction of carbon emissions.

The use of cement in concrete structures can be minimized through the manufacture of functionally layered structural elements where concrete with high cement content is used rationally only when it contributes significantly to the performance of the structure. In functionally layered concrete, horizontal variation in material composition can be achieved by casting adjacent vertical layers of different materials. Removable vertical panels can be used to demarcate the mixes during casting. A good bond between the layers can be achieved by removing the panels prior to concrete hardening. However, a major problem with this application is the control of the fresh-state deformations of the adjacent vertical layers.

This study investigates the fundamental problem of fresh state stability of concrete prisms that consist of two vertical layers of different mixes. A novel limit-state approach based on plasticity theory is formulated to assess the stability of the system as a function of material properties and geometry. The relationship between material parameters, system stability and geometry is determined and the formulated limit-state approach is validated against experimental results.

Description

Keywords

3403 Macromolecular and Materials Chemistry, 33 Built Environment and Design, 34 Chemical Sciences, 40 Engineering, 4005 Civil Engineering, 3302 Building

Journal Title

RILEM Bookseries

Conference Name

2nd International RILEM Conference on Rheology and Processing of Construction Materials (RheoCon2) and the 9th International RILEM Symposium on Self-Compacting Concrete (SCC9). Dresden (Germany).

Journal ISSN

2211-0844
2211-0852

Volume Title

23

Publisher

Springer International Publishing

Rights

All rights reserved
Sponsorship
Engineering and Physical Sciences Research Council (EP/N017668/1)
The authors would like to acknowledge the financial support of EPSRC - the Engineering and Physical Sciences Research Council (UK) [Project reference number: EP/N017668/1].