Show simple item record

dc.contributor.authorvan de Brug, Ten
dc.contributor.authorCamia, Fen
dc.contributor.authorLis, Marcinen
dc.date.accessioned2019-05-08T12:49:00Z
dc.date.available2019-05-08T12:49:00Z
dc.identifier.issn1083-6489
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/292531
dc.description.abstractWe study spin systems defined by the winding of a random walk loop soup. For a particular choice of loop soup intensity, we show that the corresponding spin system is reflection-positive and is dual, in the Kramers-Wannier sense, to the spin system sgn(ϕ) where ϕ is a discrete Gaussian free field. In general, we show that the spin correlation functions have conformally covariant scaling limits corresponding to the one-parameter family of functions studied by Camia, Gandolfi and Kleban (Nuclear Physics B 902, 2016) and defined in terms of the winding of the Brownian loop soup. These functions have properties consistent with the behavior of correlation functions of conformal primaries in a conformal field theory. Here, we prove that they do correspond to correlation functions of continuum fields (random generalized functions) for values of the intensity of the Brownian loop soup that are not too large.
dc.description.sponsorshipThe research of ML was funded by EPSRC grants EP/I03372X/1 and EP/L018896/1.
dc.titleSpin systems from loop soupsen
dc.typeArticle
prism.number81en
prism.publicationNameElectronic Journal of Probabilityen
prism.volume23en
dc.identifier.doi10.17863/CAM.39691
dcterms.dateAccepted2018-07-15en
rioxxterms.versionofrecord10.1214/18-EJP200en
rioxxterms.versionVoR*
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2018-07-15en
dc.identifier.eissn1083-6489
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/I03372X/1)
pubs.funder-project-idEPSRC (EP/L018896/1)
cam.issuedOnline2018-09-16en
dc.identifier.urlhttps://projecteuclid.org/euclid.ejp/1536717740#infoen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record