Learning optimal spatially-dependent regularization parameters in total variation image denoising
dc.contributor.author | Van Chung, C | |
dc.contributor.author | De los Reyes, JC | |
dc.contributor.author | Schönlieb, CB | |
dc.date.accessioned | 2019-05-13T12:45:07Z | |
dc.date.available | 2019-05-13T12:45:07Z | |
dc.date.issued | 2017-06-21 | |
dc.identifier.issn | 0266-5611 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/292704 | |
dc.description.abstract | We consider a bilevel optimization approach in function space for the choice of spatially dependent regularization parameters in TV image denoising models. First- and second-order optimality conditions for the bilevel problem are studied when the spatially-dependent parameter belongs to the Sobolev space H1(Ω). A combined Schwarz domain decomposition-semismooth Newton method is proposed for the solution of the full optimality system and local superlinear convergence of the semismooth Newton method is verified. Exhaustive numerical computations are finally carried out to show the suitability of the approach. | |
dc.publisher | IOP Science | |
dc.title | Learning optimal spatially-dependent regularization parameters in total variation image denoising | |
dc.type | Article | |
prism.issueIdentifier | 7 | |
prism.publicationDate | 2017 | |
prism.publicationName | Inverse Problems | |
prism.volume | 33 | |
dc.identifier.doi | 10.17863/CAM.39857 | |
dcterms.dateAccepted | 2016-11-30 | |
rioxxterms.versionofrecord | 10.1088/1361-6420/33/7/074005 | |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
rioxxterms.licenseref.startdate | 2017-06-21 | |
dc.identifier.eissn | 1361-6420 | |
dc.publisher.url | https://iopscience.iop.org/article/10.1088/1361-6420/33/7/074005/meta | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/N014588/1) | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/M00483X/1) | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/J009539/1) | |
pubs.funder-project-id | Alan Turing Institute (unknown) | |
pubs.funder-project-id | European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (691070) | |
cam.issuedOnline | 2017-06-21 | |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1361-6420/33/7/074005/meta |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge