Repository logo
 

Time-Resolved Investigation of the Molecular Chemiluminescence SrI(A21/2,3,2,B2+→X2+) and the Atomic Resonance Fluorescence Sr(53P1→51S0) Following The Pulsed Dye Laser Generation Of Sr(53PJ) in the Presence of CF3I


Type

Journal Article

Change log

Authors

Antrobus, S 
Husain, D 
Lei, Jie 
Castaño, F 
Rayo, MN Sanchez 

Abstract

jats:pA time-resolved investigation is presented of the electronic energy distribution in SrI following the collision of the optically metastable strontium atom, Sr [5s5p(jats:sup3</jats:sup>Pjats:subJ</jats:sub>)], with the molecule CFjats:sub3</jats:sub>I. Sr[5s5p(jats:sup3</jats:sup>Pjats:subJ</jats:sub>)], 1.807 eV above its 5sjats:sup2</jats:sup>(jats:sup1</jats:sup>Sjats:sub0</jats:sub>) electronic ground state, was generated by pulsed dye-laser excitation of ground state strontium vapour to the Sr(5jats:sup3</jats:sup>Pjats:sub1</jats:sub>) state at , λ =689.3 nm {Sr(5jats:sup3</jats:sup>Pjats:sub1</jats:sub>←5jats:sup1</jats:sup>Sjats:sub0</jats:sub>)} at elevated temperature (840 K) in the presence of excess helium buffer gas in which rapid Boltzmann equilibration within the 5jats:sup3</jats:sup>Pjats:subJ</jats:sub> spin-orbit manifold takes place. Time resolved atomic emission from Sr(5jats:sup3</jats:sup>Pjats:sub1</jats:sub>→5jats:sup1</jats:sup>Sjats:sub0</jats:sub>) at the resonance transition and the molecular chemiluminescence from SrI(Ajats:sup2</jats:sup>∏jats:sub1,2,3/2,</jats:sub>Bjats:sup2</jats:sup>∑jats:sup+</jats:sup>→Xjats:sup2</jats:sup>∑jats:sup+</jats:sup>) resulting from reaction of the excited atom with CFjats:sub3</jats:sub>I were recorded and shown to be exponential in character. SrI in the Ajats:sup2</jats:sup>∏jats:sub1/2,3/2</jats:sub> (172.5, 175.4 kJ moljats:sup-1</jats:sup>) and Bjats:sup2</jats:sup>∑jats:sup+</jats:sup> (177.3 kJ moljats:sup-1</jats:sup>) states are energetically accessible on collision by direct-I-atomic abstraction between Sr(jats:sup3</jats:sup>P) and CFjats:sub3</jats:sub>I. The first-order decay coefficients for the atomic and molecular emissions are found to be equal under identical conditions and hence SrI(Ajats:sup2</jats:sup>∏jats:sub1/2,3/2</jats:sub>, Bjats:sup2</jats:sup>∑jats:sup+</jats:sup>) are shown to arise from direct I- atom abstraction reactions. The molecular systems recorded were SrI (Ajats:sup2</jats:sup>∏jats:sub1/2</jats:sub>→Xjats:sup2</jats:sup>∑jats:sup+</jats:sup>, Δv=0, λ=694 nm), SrI(Ajats:sup2</jats:sup>∏jats:sub3/2</jats:sub>→Xjats:sup2</jats:sup>∑jats:sup+</jats:sup>, Δv=0, λ=677 nm) and SrI(Bjats:sup2</jats:sup>∑jats:sup+</jats:sup>→Xjats:sup2</jats:sup>∑jats:sup+</jats:sup>) (Δv=0, λ=674 nm), dominated by the Δv=0 sequences on account of Franck-Condon considerations. The combination of integrated m61ecular and atomic intensity measurements yields estimates of the branching ratios into the specific electronic states, Ajats:sub1/2</jats:sub>, Ajats:sub3/2</jats:sub> and B, arising from Sr(5jats:sup3</jats:sup>Pjats:subJ</jats:sub>)+CFjats:sub3</jats:sub>I which are found to be as follows: Ajats:sub1/2</jats:sub>,1.2 × 10jats:sup-2</jats:sup>; Ajats:sub3/2</jats:sub>, 6.7 × 10jats:sup-3</jats:sup>; B, 5.1 × 10jats:sup-3</jats:sup> yielding ∑SrI(Ajats:sub1/2</jats:sub>+Ajats:sub3/2</jats:sub>+B)=2.4 × 10jats:sup-2</jats:sup>. As only the X, A and B states SrI are accessible on reaction, assuming that the removal of Sr(5jats:sup3</jats:sup>Pjats:subJ</jats:sub>) occurs totally by chemical removal, this yields an upper limit for the branching ratio into the ground state of ca. 98%. The present results are compared with previous time-resolved measurements on excited states of strontium halides that we have reported on various halogenated species resulting from reactions of Sr(5jats:sup3</jats:sup>Pjats:subJ</jats:sub>), together with analogous chemiluminescence studies on Sr(jats:sup3</jats:sup>Pjats:subJ</jats:sub>) and Ca(4jats:sup3</jats:sup>Pjats:subJ</jats:sub>) from molecular beam measurements.</jats:p>

Description

Keywords

51 Physical Sciences, 34 Chemical Sciences, 5102 Atomic, Molecular and Optical Physics, 3406 Physical Chemistry

Is Part Of

Publisher

Hindawi Limited