Show simple item record

dc.contributor.authorMostajeran, Cyrusen
dc.contributor.authorSepulchre, Rodolpheen
dc.date.accessioned2019-07-03T14:42:14Z
dc.date.available2019-07-03T14:42:14Z
dc.date.issued2017-11-01en
dc.identifier.issn0302-9743
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/294314
dc.description.abstract© 2017, Springer International Publishing AG. We introduce a family of orders on the set S+n of positive-definite matrices of dimension n derived from the homogeneous geometry of S+n induced by the natural transitive action of the general linear group GL(n). The orders are induced by affine-invariant cone fields, which arise naturally from a local analysis of the orders that are compatible with the homogeneous structure of S+n. We then revisit the well-known Löwner-Heinz theorem and provide an extension of this classical result derived using differential positivity with respect to affine-invariant cone fields.
dc.description.sponsorshipERC
dc.language.isoenen
dc.titleAffine-invariant orders on the set of positive-definite matricesen
dc.typeConference Object
prism.endingPage620
prism.publicationDate2017en
prism.publicationNameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
prism.startingPage613
prism.volume10589 LNCSen
dc.identifier.doi10.17863/CAM.41413
dcterms.dateAccepted2017-07-03en
rioxxterms.versionofrecord10.1007/978-3-319-68445-1_71en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-11-01en
dc.contributor.orcidSepulchre, Rodolphe [0000-0002-7047-3124]
dc.identifier.eissn1611-3349
rioxxterms.typeConference Paper/Proceeding/Abstracten
pubs.funder-project-idECH2020 EUROPEAN RESEARCH COUNCIL (ERC) (670645)
pubs.funder-project-idEPSRC (1355845)
pubs.conference-name3rd conference on Geometric Science of Information (GSI)en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record