Repository logo
 

Identification of Cellular Pathogenicity Markers for SIL1 Mutations Linked to Marinesco-Sjögren Syndrome.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Gatz, Christian 
Hathazi, Denisa 
Münchberg, Ute 
Buchkremer, Stephan 
Labisch, Thomas 

Abstract

Background and objective: Recessive mutations in the SIL1 gene cause Marinesco-Sjögren syndrome (MSS), a rare neuropediatric disorder. MSS-patients typically present with congenital cataracts, intellectual disability, cerebellar ataxia and progressive vacuolar myopathy. However, atypical clinical presentations associated with SIL1 mutations have been described over the last years; compound heterozygosity of SIL1 missense mutations even resulted in a phenotype not fulfilling the clinical diagnostic criteria of MSS. Thus, a read-out system to evaluate reliably the pathogenicity of amino acid changes in SIL1 is needed. Here, we aim to provide suitable cellular biomarkers enabling the robust evaluation of pathogenicity of SIL1 mutations. Methods: Five SIL1 variants including one polymorphism (p.K132Q), three known pathogenic mutations (p.V231_I232del, p.G312R, and p.L457P) and one ambiguous missense variant (p.R92W) were studied along with the wild-type proteins in Hek293 in vitro models by cell biological assays, immunoprecipitation, immunoblotting, and immunofluorescence as well as electron microscopy. Moreover, the SIL1-interactomes were interrogated by tandem-affinity-purification and subsequent mass spectrometry. Results: Our combined studies confirmed the pathogenicity of p.V231_I232del, p.G312R, and p.L457P by showing instability of the proteins as well as tendency to form aggregates. This observation is in line with altered structure of the ER-Golgi system and vacuole formation upon expression of these pathogenic SIL1-mutants as well as the presence of oxidative or ER-stress. Reduced cellular fitness along with abnormal mitochondrial architecture could also be observed. Notably, both the polymorphic p.K132Q and the ambiguous p.R92W variants did not elicit such alterations. Study of the SIL1-interactome identified POC1A as a novel binding partner of wild-type SIL1; the interaction is disrupted upon the presence of pathogenic mutants but not influenced by the presence of benign variants. Disrupted SIL1-POC1A interaction is associated with centrosome disintegration. Conclusions: We developed a combination of cellular outcome measures to evaluate the pathogenicity of SIL1 variants in suitable in vitro models and demonstrated that the p. R92W missense variant is a polymorphism rather than a pathogenic mutation leading to MSS.

Description

Keywords

FAM134B, Marinesco-Sjögren syndrome biomarkers, POC1A, SIL1 missense mutation, SIL1-interactome, centrosome

Journal Title

Front Neurol

Conference Name

Journal ISSN

1664-2295
1664-2295

Volume Title

10

Publisher

Frontiers Media SA

Rights

All rights reserved