Show simple item record

dc.contributor.authorThorne, Jacken
dc.date.accessioned2019-07-16T23:30:39Z
dc.date.available2019-07-16T23:30:39Z
dc.date.issued2019-01-01en
dc.identifier.issn1431-0635
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/294685
dc.description.abstractWe consider elliptic curves over global fields of positive characteristic with two distinct marked non- trivial rational points. Restricting to a certain subfamily of the universal one, we show that the average size of the 2-Selmer groups of these curves exists, in a natural sense, and equals 12. Along the way, we consider a map from these 2-Selmer groups to the moduli space of G-torsors over an algebraic curve, where G is isogenous to SL_2^4 , and show that the images of 2-Selmer elements under this map become equidistributed in the limit.
dc.publisherUniversität Bielefeld
dc.rightsAll rights reserved
dc.titleOn the average number of 2-selmer elements of elliptic curves over F<inf>q</inf>(X) with two marked pointsen
dc.typeArticle
prism.endingPage1223
prism.publicationDate2019en
prism.publicationNameDocumenta Mathematicaen
prism.startingPage1179
prism.volume24en
dc.identifier.doi10.17863/CAM.41790
dcterms.dateAccepted2019-07-11en
rioxxterms.versionofrecord10.25537/dm.2019v24.1179-1223en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2019-01-01en
dc.identifier.eissn1431-0643
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (714405)
cam.orpheus.counter2*
rioxxterms.freetoread.startdate2022-07-16


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record