Geometric ergodicity in a weighted sobolev space
dc.contributor.author | Devraj, A | |
dc.contributor.author | Kontoyiannis, I | |
dc.contributor.author | Meyn, S | |
dc.date.accessioned | 2019-07-31T11:52:35Z | |
dc.date.available | 2019-07-31T11:52:35Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0091-1798 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/295116 | |
dc.description.abstract | For a discrete-time Markov chain $\{X(t)\}$ evolving on $\Re^\ell$ with transition kernel $P$, natural, general conditions are developed under which the following are established: 1. The transition kernel $P$ has a purely discrete spectrum, when viewed as a linear operator on a weighted Sobolev space $L_\infty^{v,1}$ of functions with norm, $$ \|f\|_{v,1} = \sup_{x \in \Re^\ell} \frac{1}{v(x)} \max \{|f(x)|, |\partial_1 f(x)|,\ldots,|\partial_\ell f(x)|\}, $$ where $v\colon \Re^\ell \to [1,\infty)$ is a Lyapunov function and $\partial_i:=\partial/\partial x_i$. 2. The Markov chain is geometrically ergodic in $L_\infty^{v,1}$: There is a unique invariant probability measure $\pi$ and constants $B<\infty$ and $\delta>0$ such that, for each $f\in L_\infty^{v,1}$, any initial condition $X(0)=x$, and all $t\geq 0$: $$\Big| \text{E}_x[f(X(t))] - \pi(f)\Big| \le Be^{-\delta t}v(x),\quad \|\nabla \text{E}_x[f(X(t))] \|_2 \le Be^{-\delta t} v(x), $$ where $\pi(f)=\int fd\pi$. 3. For any function $f\in L_\infty^{v,1}$ there is a function $h\in L_\infty^{v,1}$ solving Poisson's equation: \[ h-Ph = f-\pi(f). \] Part of the analysis is based on an operator-theoretic treatment of the sensitivity process that appears in the theory of Lyapunov exponents. | |
dc.language.iso | en | |
dc.publisher | Institute of Mathematical Statistics | |
dc.subject | Markov chain | |
dc.subject | stochastic Lyapunov function | |
dc.subject | discrete spectrum | |
dc.subject | sensitivity process | |
dc.subject | weighted Sobolev space | |
dc.subject | Lyapunov exponent | |
dc.title | Geometric ergodicity in a weighted sobolev space | |
dc.type | Article | |
prism.endingPage | 403 | |
prism.issueIdentifier | 1 | |
prism.publicationDate | 2020 | |
prism.publicationName | Annals of Probability | |
prism.startingPage | 380 | |
prism.volume | 48 | |
dc.identifier.doi | 10.17863/CAM.42187 | |
rioxxterms.versionofrecord | 10.1214/19-AOP1364 | |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
rioxxterms.licenseref.startdate | 2020-01-01 | |
dc.contributor.orcid | Kontoyiannis, Ioannis [0000-0001-7242-6375] | |
dc.identifier.eissn | 2168-894X | |
rioxxterms.type | Journal Article/Review | |
cam.issuedOnline | 2020-01-01 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge