Show simple item record

dc.contributor.authorDevraj, A
dc.contributor.authorKontoyiannis, I
dc.contributor.authorMeyn, S
dc.date.accessioned2019-07-31T11:52:35Z
dc.date.available2019-07-31T11:52:35Z
dc.date.issued2020
dc.identifier.issn0091-1798
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/295116
dc.description.abstractFor a discrete-time Markov chain $\{X(t)\}$ evolving on $\Re^\ell$ with transition kernel $P$, natural, general conditions are developed under which the following are established: 1. The transition kernel $P$ has a purely discrete spectrum, when viewed as a linear operator on a weighted Sobolev space $L_\infty^{v,1}$ of functions with norm, $$ \|f\|_{v,1} = \sup_{x \in \Re^\ell} \frac{1}{v(x)} \max \{|f(x)|, |\partial_1 f(x)|,\ldots,|\partial_\ell f(x)|\}, $$ where $v\colon \Re^\ell \to [1,\infty)$ is a Lyapunov function and $\partial_i:=\partial/\partial x_i$. 2. The Markov chain is geometrically ergodic in $L_\infty^{v,1}$: There is a unique invariant probability measure $\pi$ and constants $B<\infty$ and $\delta>0$ such that, for each $f\in L_\infty^{v,1}$, any initial condition $X(0)=x$, and all $t\geq 0$: $$\Big| \text{E}_x[f(X(t))] - \pi(f)\Big| \le Be^{-\delta t}v(x),\quad \|\nabla \text{E}_x[f(X(t))] \|_2 \le Be^{-\delta t} v(x), $$ where $\pi(f)=\int fd\pi$. 3. For any function $f\in L_\infty^{v,1}$ there is a function $h\in L_\infty^{v,1}$ solving Poisson's equation: \[ h-Ph = f-\pi(f). \] Part of the analysis is based on an operator-theoretic treatment of the sensitivity process that appears in the theory of Lyapunov exponents.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics
dc.subjectMarkov chain
dc.subjectstochastic Lyapunov function
dc.subjectdiscrete spectrum
dc.subjectsensitivity process
dc.subjectweighted Sobolev space
dc.subjectLyapunov exponent
dc.titleGeometric ergodicity in a weighted sobolev space
dc.typeArticle
prism.endingPage403
prism.issueIdentifier1
prism.publicationDate2020
prism.publicationNameAnnals of Probability
prism.startingPage380
prism.volume48
dc.identifier.doi10.17863/CAM.42187
rioxxterms.versionofrecord10.1214/19-AOP1364
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2020-01-01
dc.contributor.orcidKontoyiannis, Ioannis [0000-0001-7242-6375]
dc.identifier.eissn2168-894X
rioxxterms.typeJournal Article/Review
cam.issuedOnline2020-01-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record