Show simple item record

dc.contributor.authorZhang, J
dc.contributor.authorFutscher, MH
dc.contributor.authorLami, V
dc.contributor.authorKosasih, FU
dc.contributor.authorCho, C
dc.contributor.authorGu, Q
dc.contributor.authorSadhanala, A
dc.contributor.authorPearson, AJ
dc.contributor.authorKan, B
dc.contributor.authorDivitini, G
dc.contributor.authorWan, X
dc.contributor.authorCredgington, D
dc.contributor.authorGreenham, NC
dc.contributor.authorChen, Y
dc.contributor.authorDucati, C
dc.contributor.authorEhrler, B
dc.contributor.authorVaynzof, Y
dc.contributor.authorFriend, RH
dc.contributor.authorBakulin, AA
dc.date.accessioned2019-09-27T23:30:53Z
dc.date.available2019-09-27T23:30:53Z
dc.date.issued2019
dc.identifier.issn1614-6832
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/297279
dc.description.abstractBulk-heterojunction (BHJ) non-fullerene organic solar cells prepared from sequentially deposited donor and acceptor layers (sq-BHJ) have recently been promising to be highly efficient, environmentally friendly, and compatible with large area and roll-to-toll fabrication. However, the related photophysics at donor-acceptor interface and the vertical heterogeneity of donor-acceptor distribution, critical for exciton dissociation and device performance, are largely unexplored. Herein, steady-state and time-resolved optical and electrical techniques are employed to characterize the interfacial trap states. Correlation with the luminescent efficiency of interfacial states and its non-radiative recombination, interfacial trap states are characterized to be about 50% more populated in the sq-BHJ than as-cast BHJ (c-BHJ), which probably limits the device voltage output. Cross-sectional energy-dispersive X-ray spectroscopy and ultraviolet photoemission spectroscopy depth profiling directly vizualize the donor-acceptor vertical stratification with a precision of 1-2 nm. From the proposed "needle" model, the high exciton dissociation efficiency is rationalized. Our study highlights the promise of sequential deposition to fabricate efficient solar cells, and points towards improving the voltage output and overall device performance via eliminating interfacial trap states.
dc.publisherWiley
dc.rightsAll rights reserved
dc.titleSequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation
dc.typeArticle
prism.issueIdentifier47
prism.publicationDate2019
prism.publicationNameAdvanced Energy Materials
prism.volume9
dc.identifier.doi10.17863/CAM.44326
dcterms.dateAccepted2019-09-26
rioxxterms.versionofrecord10.1002/aenm.201902145
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2019-12-01
dc.contributor.orcidZhang, Jiangbin [0000-0001-6565-5962]
dc.contributor.orcidKosasih, Felix [0000-0003-1060-4003]
dc.contributor.orcidDivitini, Giorgio [0000-0003-2775-610X]
dc.contributor.orcidCredgington, Daniel [0000-0003-4246-2118]
dc.contributor.orcidGreenham, Neil [0000-0002-2155-2432]
dc.contributor.orcidDucati, Caterina [0000-0003-3366-6442]
dc.contributor.orcidFriend, Richard [0000-0001-6565-6308]
dc.identifier.eissn1614-6840
dc.publisher.urlhttp://dx.doi.org/10.1002/aenm.201902145
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M005143/1)
pubs.funder-project-idRoyal Society (RG140472)
pubs.funder-project-idEuropean Research Council (639750)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P024947/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/S019367/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R00661X/1)
cam.issuedOnline2019-10-30
cam.orpheus.successThu Jan 30 10:37:54 GMT 2020 - Embargo updated
rioxxterms.freetoread.startdate2020-12-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record