Show simple item record

dc.contributor.authorVan Den Ameele, Jelleen
dc.contributor.authorLi, Andy YZen
dc.contributor.authorMa, Hansongen
dc.contributor.authorChinnery, Patricken
dc.date.accessioned2019-10-03T23:30:35Z
dc.date.available2019-10-03T23:30:35Z
dc.date.issued2020-01en
dc.identifier.issn1084-9521
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/297429
dc.description.abstractInheritance of the mitochondrial genome does not follow the rules of conventional Mendelian genetics. The mitochondrial DNA (mtDNA) is present in many copies per cell and is inherited through the maternal germline. In addition, novel mutations will give rise to heteroplasmy, the coexistence of different mtDNA variants within a single cell, whose levels can vary considerably between cells, organs or organisms. The inheritance and subsequent accumulation of deleterious variants of mtDNA is the cause of severe progressive mitochondrial disorders and plays a role in many other conditions, including aging, cancer and neurodegenerative disorders. Here, we discuss the processes that give rise to cell-to-cell variability in mtDNA composition, focussing on somatic mtDNA segregation and on less conventional sources of heteroplasmy: non-maternal inheritance and mtDNA recombination. Understanding how mtDNA variants and mutations emerge and evolve within an organism is of crucial importance to prevent and cure mitochondrial disease and can potentially impact more common aging-associated conditions.
dc.description.sponsorshipEMBO Long-term Fellowship (ALTF 1600_2014) Wellcome Trust Postdoctoral Training Fellowship for Clinicians (105839). Wellcome Trust Sir Henry Dale Fellow (202269/Z/16/Z) Wellcome Trust Principal Research Fellow (212219/Z/18/Z) UK NIHR Senior Investigator Support from the Medical Research Council Mitochondrial Biology Unit (MC_UP_1501/2), the Evelyn Trust, and the National Institute for Health Research (NIHR) Biomedical Research Centre
dc.format.mediumPrint-Electronicen
dc.languageengen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleMitochondrial heteroplasmy beyond the oocyte bottleneck.en
dc.typeArticle
prism.endingPage166
prism.publicationDate2020en
prism.publicationNameSeminars in cell & developmental biologyen
prism.startingPage156
prism.volume97en
dc.identifier.doi10.17863/CAM.44490
dcterms.dateAccepted2019-10-01en
rioxxterms.versionofrecord10.1016/j.semcdb.2019.10.001en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2020-01en
dc.contributor.orcidVan Den Ameele, Jelle [0000-0002-2744-0810]
dc.contributor.orcidMa, Hansong [0000-0002-2705-1970]
dc.contributor.orcidChinnery, Patrick [0000-0002-7065-6617]
dc.identifier.eissn1096-3634
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idWellcome Trust (202269/Z/16/Z)
pubs.funder-project-idWELLCOME TRUST (105839/Z/14/Z)
pubs.funder-project-idWellcome Trust (212219/Z/18/Z)
cam.orpheus.successThu Jan 30 10:37:34 GMT 2020 - Embargo updated*
rioxxterms.freetoread.startdate2020-10-11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's licence is described as Attribution-NonCommercial-NoDerivatives 4.0 International