Research data supporting "De novo exploration and self-guided learning of potential-energy surfaces"
dc.contributor.author | Bernstein, Noam | en |
dc.contributor.author | Csanyi, Gabor | en |
dc.contributor.author | Deringer, Volker | en |
dc.date.accessioned | 2019-10-11T10:39:07Z | |
dc.date.available | 2019-10-11T10:39:07Z | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/297743 | |
dc.description | This dataset supports our work on Gaussian Approximation Potential driven random structure searching (GAP-RSS) models for exploring and fitting potential-energy surfaces of materials. It provides, in separate tar archives, an implementation of the methodology and the final GAP-RSS models as reported in the associated publication. | en |
dc.format | The GAP models are provided as parameter files to be used with the associated computer code, which is freely available for non-commercial research (http://www.libatoms.org/gap/gap_download.html). | en |
dc.rights | Attribution 4.0 International | en |
dc.rights | Attribution 4.0 International | en |
dc.rights | Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | density functional theory | en |
dc.subject | machine learning | en |
dc.title | Research data supporting "De novo exploration and self-guided learning of potential-energy surfaces" | en |
dc.type | Dataset | |
dc.identifier.doi | 10.17863/CAM.43407 | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dcterms.format | tar.bz2 | en |
dc.contributor.orcid | Csanyi, Gabor [0000-0002-8180-2034] | |
dc.contributor.orcid | Deringer, Volker [0000-0001-6873-0278] | |
rioxxterms.type | Other | en |
datacite.issupplementto.doi | 10.1038/s41524-019-0236-6 | en |
datacite.issupplementto.url | https://www.repository.cam.ac.uk/handle/1810/296772 |