RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis.
View / Open Files
Authors
Mackie, Duncan I
Nielsen, Natalie R
Singh, Smriti
Davis, Reema B
Dy, Danica
Caron, Kathleen M
Publication Date
2019-11-26Journal Title
Proceedings of the National Academy of Sciences of USA
ISSN
0027-8424
Publisher
National Academy of Sciences
Volume
116
Issue
48
Pages
24093-24099
Language
eng
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Mackie, D. I., Nielsen, N. R., Harris, M., Singh, S., Davis, R. B., Dy, D., Ladds, G., & et al. (2019). RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis.. Proceedings of the National Academy of Sciences of USA, 116 (48), 24093-24099. https://doi.org/10.1073/pnas.1905561116
Abstract
Receptor-activity-modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein-coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.
Keywords
G-protein–coupled receptors, chemokine receptors, endosomal sorting, guided cell migration, receptor-activity–modifying proteins
Sponsorship
This work was supported by NIH Grants RO1-DK099156, RO1-HD060860, and RO1-HL129086 (to K.M.C.); American Heart Association Innovator Award 16IRG27260077 (to K.M.C.); NIH Grant F32-HL134279 (to D.I.M.); American Heart Association Grant 15POST25270006 (to R.B.D.); NIH Grant F31-HL143836 (to N.R.N.); Biotechnology and Biological Sciences Research Council (BBSRC) Grant BB/M00015X/2 (to G.L.); and BBSRC Doctoral Training Partnership Grant BB/JO14540/1 (to M.H.).
Funder references
Biotechnology and Biological Sciences Research Council (BB/M00015X/2)
BBSRC (1643678)
Biotechnology and Biological Sciences Research Council (1643678)
Identifiers
External DOI: https://doi.org/10.1073/pnas.1905561116
This record's URL: https://www.repository.cam.ac.uk/handle/1810/299354
Rights
All rights reserved
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.