Repository logo
 

RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Mackie, Duncan I 
Nielsen, Natalie R 
Singh, Smriti 
Davis, Reema B 

Abstract

Receptor-activity-modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein-coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.

Description

Keywords

G-protein–coupled receptors, chemokine receptors, endosomal sorting, guided cell migration, receptor-activity–modifying proteins

Journal Title

Proceedings of the National Academy of Sciences of USA

Conference Name

Journal ISSN

0027-8424
1091-6490

Volume Title

116

Publisher

National Academy of Sciences

Rights

All rights reserved
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/M00015X/2)
BBSRC (1643678)
Biotechnology and Biological Sciences Research Council (1643678)
This work was supported by NIH Grants RO1-DK099156, RO1-HD060860, and RO1-HL129086 (to K.M.C.); American Heart Association Innovator Award 16IRG27260077 (to K.M.C.); NIH Grant F32-HL134279 (to D.I.M.); American Heart Association Grant 15POST25270006 (to R.B.D.); NIH Grant F31-HL143836 (to N.R.N.); Biotechnology and Biological Sciences Research Council (BBSRC) Grant BB/M00015X/2 (to G.L.); and BBSRC Doctoral Training Partnership Grant BB/JO14540/1 (to M.H.).
Relationships
Is supplemented by: