Repository logo
 

Sound-driven single-electron transfer in a circuit of coupled quantum rails.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Mortemousque, Pierre-André 

Abstract

Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.

Description

Keywords

5108 Quantum Physics, 51 Physical Sciences, 5104 Condensed Matter Physics

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

10

Publisher

Springer Science and Business Media LLC
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (642688)