Integration with stochastic point processes
View / Open Files
Authors
Öztireli, AC
Publication Date
2016-08-01Journal Title
ACM Transactions on Graphics
ISSN
0730-0301
Volume
35
Issue
5
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Öztireli, A. (2016). Integration with stochastic point processes. ACM Transactions on Graphics, 35 (5)https://doi.org/10.1145/2932186
Abstract
© 2016 ACM. We present a novel comprehensive approach for studying error in integral estimation with point distributions based on point process statistics. We derive exact formulae for bias and variance of integral estimates in terms of the spatial or spectral characteristics of integrands and first- And-second order product density measures of general point patterns. The formulae allow us to study and design sampling schemes adapted to different classes of integrands by analyzing the effect of sampling density, weighting, and correlations among point locations separately. We then focus on non- Adaptive correlated stratified sampling patterns and specialize the formulae to derive closed-form and easy- To- Analyze expressions of bias and variance for various stratified sampling strategies. Based on these expressions, we perform a theoretical error analysis for integrands involving the discontinuous visibility function.We show that significant reductions in error can be obtained by considering alternative sampling strategies instead of the commonly used random jittering or low discrepancy patterns. Our theoretical results agree with and extend various previous results, provide a unified analytic treatment of point patterns, and lead to novel insights. We validate the results with extensive experiments on benchmark integrands as well as real scenes with soft shadows.
Identifiers
External DOI: https://doi.org/10.1145/2932186
This record's URL: https://www.repository.cam.ac.uk/handle/1810/300159
Rights
All rights reserved