Show simple item record

dc.contributor.authorZhou, Difan
dc.contributor.authorShi, Yunhua
dc.contributor.authorDennis, Anthony R
dc.contributor.authorCardwell, David A
dc.contributor.authorDurrell, John H
dc.date.accessioned2020-01-20T10:55:41Z
dc.date.available2020-01-20T10:55:41Z
dc.date.issued2020-01-20
dc.date.submitted2019-10-13
dc.identifier.issn0953-2048
dc.identifier.othersustab66e7
dc.identifier.otherab66e7
dc.identifier.othersust-103571.r1
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/301028
dc.description.abstractAbstract: Bulk (RE)BCO, where RE is a rare-earth element or yttrium, superconductors fabricated in the form of rings are potentially useful for a variety of solenoidal-type applications, such as small, high field nuclear magnetic resonance and electromagnetic undulators. It is anticipated that the practical exploitation of these technologically important materials will involve pulse field magnetization (PFM) and, consequently, it is important to understand the behavior of ring-shaped samples subjected to the PFM process. Macroscopic flux jumps were observed in PFM experiments on ring-shaped bulk samples when the peak applied field reaches a threshold magnitude, similar to behavior reported previously in cylindrical samples. Magnetic flux jumps inward when the thermal instability is triggered, however it subsequently flows outwards from the sample, resulting in a relatively low trapped field. This behavior is attributed to a variety of effects, including the inhomogeneity of the material, which may lead to the formation of localized hot spots during the PFM process. In order to further elucidate this phenomena, the properties of a structure consisting of a bulk superconducting ring with a cylindrical superconductor core were studied. We observe that, although a flux jump occurs consistently in the ring, a critical state is established at the boundary of the ring-shaped sample and the core. We provide a detailed account of these experimental observations and provide an explanation in terms of the current understanding of the PFM process.
dc.languageen
dc.rightsAttribution 3.0 Unported (CC BY 3.0)en
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en
dc.subjectPaper
dc.subjectFocus on Processing and Application of Superconducting Bulk Materials 2019
dc.subjectHTS bulk superconductors
dc.subjectmagnetization
dc.subjecttrapped field
dc.subjectflux dynamics
dc.subjectflux jump
dc.titleFlux jumps in ring-shaped and assembled bulk superconductors during pulsed field magnetization
dc.typeArticle
dc.date.updated2020-01-20T10:55:41Z
dc.identifier.doi10.17863/CAM.48104
dcterms.dateAccepted2020-01-02
rioxxterms.versionofrecord10.1088/1361-6668/ab66e7
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/3.0/
dc.contributor.orcidZhou, Difan [0000-0001-9889-8872]
dc.contributor.orcidShi, Yunhua [0000-0003-4240-5543]
dc.contributor.orcidCardwell, David A [0000-0002-2020-2131]
dc.contributor.orcidDurrell, John H [0000-0003-0712-3102]
dc.identifier.eissn1361-6668
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P00962X/1)


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported (CC BY 3.0)
Except where otherwise noted, this item's licence is described as Attribution 3.0 Unported (CC BY 3.0)