Repository logo
 

Introducing the illustris project: Simulating the coevolution of dark and visible matter in the universe

Published version
Peer-reviewed

Type

Article

Change log

Authors

Vogelsberger, M 
Genel, S 
Springel, V 
Torrey, P 

Abstract

We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5 Mpc)3, has a dark mass resolution of 6.26 × 106M⊙, and an initial baryonic matter mass resolution of 1.26 × 106M⊙. At z = 0 gravitational forces are softened on scales of 710 pc, and the smallest hydrodynamical gas cells have an extent of 48 pc. We follow the dynamical evolution of 2 × 18203 resolution elements and in addition passively evolve 18203 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: Primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40 000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.

Description

Keywords

methods: numerical, cosmology: theory

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

1365-2966
1365-2966

Volume Title

444

Publisher

Oxford University Press

Rights

Publisher's own licence
Sponsorship
Science and Technology Facilities Council (ST/L000725/1)