Show simple item record

dc.contributor.authorBente, Klaas
dc.contributor.authorMohammadinejad, Sarah
dc.contributor.authorCharsooghi, Mohammad Avalin
dc.contributor.authorBachmann, Felix
dc.contributor.authorCodutti, Agnese
dc.contributor.authorLefèvre, Christopher T
dc.contributor.authorKlumpp, Stefan
dc.contributor.authorFaivre, Damien
dc.date.accessioned2020-02-11T05:08:19Z
dc.date.available2020-02-11T05:08:19Z
dc.date.issued2020-01-28
dc.date.submitted2019-04-09
dc.identifier.issn2050-084X
dc.identifier.other47551
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/301974
dc.descriptionFunder: Max-Planck-Gesellschaft; FundRef: http://dx.doi.org/10.13039/501100004189
dc.descriptionFunder: IMPRS on Multiscale Biosystems
dc.descriptionFunder: French National Research Agency; FundRef: http://dx.doi.org/10.13039/501100001665; Grant(s): ANR Tremplin-ERC: ANR-16-TERC-0025-01
dc.description.abstractBacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additional experimental limitations. We show that magnetotactic cocci with two flagella bundles on one pole swim faster than 500 µm·s-1 along a double helical path, making them one of the fastest natural microswimmers. We additionally reveal that the cells reorient in less than 5 ms, an order of magnitude faster than reported so far for any other bacteria. Using hydrodynamic modeling, we demonstrate that a mode where a pushing and a pulling bundle cooperate is the only possibility to enable both helical tracks and fast reorientations. The advantage of sheathed flagella bundles is the high rigidity, making high swimming speeds possible.
dc.languageen
dc.publishereLife Sciences Publications, Ltd
dc.rightsAttribution 4.0 International (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectResearch Article
dc.subjectPhysics of Living Systems
dc.subjectMagnetococcus marinus
dc.subjectmagnetotactic bacteria
dc.subjectmicroswimmer
dc.subjectpath tracking
dc.subjectdark-field microscopy
dc.subjectOther
dc.titleHigh-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria.
dc.typeArticle
dc.date.updated2020-02-11T05:08:18Z
prism.publicationNameElife
prism.volume9
dc.identifier.doi10.17863/CAM.49051
dcterms.dateAccepted2020-01-27
rioxxterms.versionofrecord10.7554/eLife.47551
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
datacite.contributor.supervisoreditor: Goldstein, Raymond E
datacite.contributor.supervisorsenior_editor: Weigel, Detlef
dc.contributor.orcidBente, Klaas [0000-0002-2520-4697]
dc.contributor.orcidMohammadinejad, Sarah [0000-0002-3758-5693]
dc.contributor.orcidCharsooghi, Mohammad Avalin [0000-0002-7772-8513]
dc.contributor.orcidKlumpp, Stefan [0000-0003-0584-2146]
dc.contributor.orcidFaivre, Damien [0000-0001-6191-3389]
dc.identifier.eissn2050-084X
pubs.funder-project-idDeutsche Forschungsgemeinschaft (FA 835/7-2)
pubs.funder-project-idDeutsche Forschungsgemeinschaft (KL 818/2-2)
pubs.funder-project-idDeutscher Akademischer Austauschdienst (57314018)
pubs.funder-project-idDeutsche Forschungsgemeinschaft (SFB 937 (A21))
pubs.funder-project-idAgence Nationale de la Recherche (ANR-16-TERC-0025-01)
cam.issuedOnline2020-01-28


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's licence is described as Attribution 4.0 International (CC BY 4.0)