Repository logo
 

Surface Chemistry of Almandine Garnet

Accepted version
Peer-reviewed

Change log

Authors

Poon, J 
Van Tol, R 
Sonke, H 

Abstract

Almandine garnet is used commonly in abrasive blasting processes to prepare metallic surfaces for painting. However, there is evidence that the process leads to significant amounts of abrasive embedded in the “cleaned” surface, and hence the surface chemistry of garnet will affect the binding of any coatings subsequently applied. In addition, in marine environments seawater aerosol droplets are expected to impact the exposed surface prior to coating application, depositing both water and dissolved inorganic ions. In this work, we provide indepth analysis of the chemistry of the almandine garnet surface using angle-resolved X-ray photoelectron spectroscopy (XPS) and note a correlation for several elemental oxides between literature values of the binding energy of the surface oxygen 1s XPS peak and the basicity of the hydroxyl group that forms on the surface. We also consider the adsorption to almandine garnet powder of seawater-relevant inorganic ions (sodium, magnesium, and calcium): Binding constants have been determined using titration measurements, solution-depletion isotherms, and numerical modeling, with calcium observed to bind more strongly than magnesium. The relevance of Langmuir-type fits to constant-pH adsorption isotherms is discussed. By contrast, sodium either binds very weakly or is effectively inert toward the garnet surface under the experimental conditions. The complex adsorption behavior observed emphasizes the necessity of using multiple techniques to characterize mineral surfaces.

Description

Keywords

40 Engineering, 34 Chemical Sciences, 3406 Physical Chemistry

Journal Title

Journal of Physical Chemistry C

Conference Name

Journal ISSN

1932-7447
1932-7455

Volume Title

124

Publisher

American Chemical Society (ACS)

Rights

All rights reserved