Repository logo
 

Modelling Heat Loss Effects in the LES of a Lean Swirl-Stabilised Flame Close to Blow-Off

Accepted version
Peer-reviewed

Type

Conference Object

Change log

Authors

Massey, James Charles  ORCID logo  https://orcid.org/0000-0003-4585-9866
Chen, Zhi X 
Swaminathan, N 

Abstract

The flame in a model gas turbine combustor close to blow-off is studied using large eddy simulation with the objective of investigating the sensitivity of including different heat loss effects within the modelling. A presumed joint probability density function approach based on the mixture fraction and progress variable with unstrained flamelets is used. The normalised enthalpy is included in the probability density function to account for heat loss within the flame. Two simulations are presented with fixed temperature boundary conditions and use adiabatic and non-adiabatic formulations of the combustion model. The results are compared against the previous fully adiabatic case and experimental data. The statistics for the simulations are similar to the results obtained from the fully adiabatic case. Improved statistics are obtained for the temperature in the near-wall regions. The non-adiabatic flamelet case shows the average reaction rate values at the flame root case are approximately 50% smaller in comparison to the adiabatic flamelet cases. This causes the lift-off height to be overestimated. Further investigation will be undertaken with the non-adiabatic flamelet case, as the flame is observed to be highly unstable.

Description

Keywords

Journal Title

Conference Name

11th Mediterranean Combustion Symposium

Journal ISSN

Volume Title

Publisher

Rights

All rights reserved
Sponsorship
EPSRC (1619171)
EPSRC DTP studentship (RG80792)