Repository logo
 

Trait Anxiety Mediated by Amygdala Serotonin Transporter in the Common Marmoset.

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

High trait anxiety is associated with altered activity across emotion regulation circuitry and a higher risk of developing anxiety disorders and depression. This circuitry is extensively modulated by serotonin. Here, to understand why some people may be more vulnerable to developing affective disorders, we investigated whether serotonin-related gene expression across the brain's emotion regulation circuitry may underlie individual differences in trait anxiety using the common marmoset (Callithrix jacchus, mixed sexes) as a model. First, we assessed the association of region-specific expression of the serotonin transporter (SLC6A4) and serotonin receptor (HTR1A, HTR2A, HTR2C) genes with anxiety-like behavior; and second, we investigated their causal role in two key features of the high trait anxious phenotype: high responsivity to anxiety-provoking stimuli and an exaggerated conditioned threat response. While the expression of the serotonin receptors did not show a significant relationship with anxiety-like behavior in any of the targeted brain regions, serotonin transporter expression, specifically within the right ventrolateral prefrontal cortex (vlPFC) and most strongly in the right amygdala, was associated positively with anxiety-like behavior. The causal relationship between amygdala serotonin levels and an animal's sensitivity to threat was confirmed via direct amygdala infusions of a selective serotonin reuptake inhibitor (SSRI), citalopram. Both anxiety-like behaviors, and conditioned threat-induced responses were reduced by the blockade of serotonin reuptake in the amygdala. Together, these findings provide evidence that high amygdala serotonin transporter expression contributes to the high trait anxious phenotype and suggest that reduction of threat reactivity by SSRIs may be mediated by their actions in the amygdala.SIGNIFICANCE STATEMENT Findings here contribute to our understanding of how the serotonin system underlies an individual's expression of threat-elicited negative emotions such as anxiety and fear within nonhuman primates. Exploration of serotonergic gene expression across brain regions implicated in emotion regulation revealed that serotonin transporter gene expression in the ventrolateral prefrontal cortex (vlPFC) and most strongly in the amygdala, but none of the serotonin receptor genes, were predictive of interindividual differences in anxiety-like behavior. Targeting of amygdala serotonin reuptake with selective serotonin reuptake inhibitors (SSRIs) confirmed the causal relationship between amygdala serotonin transporter and an animal's sensitivity to threat by reversing expression of two key features of the high trait-like anxiety phenotype: high responsivity to anxiety-provoking uncertain threat and responsivity to certain conditioned threat.

Description

Keywords

amygdala, anxiety, emotion, primate, serotonin, transporter, Amygdala, Animals, Anxiety, Behavior, Animal, Callithrix, Citalopram, Emotions, Exploratory Behavior, Extinction, Psychological, Fear, Female, Humans, Male, Receptors, Serotonin, Serotonin Plasma Membrane Transport Proteins, Selective Serotonin Reuptake Inhibitors

Journal Title

J Neurosci

Conference Name

Journal ISSN

0270-6474
1529-2401

Volume Title

40

Publisher

Society for Neuroscience

Rights

All rights reserved
Sponsorship
Medical Research Council (MR/M023990/1)