Repository logo
 

An investigation of the long-range and local structure of sub-stoichiometric zirconium carbide sintered at different temperatures.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Rana, Dhan-Sham B K 
Solvas, Eugenio Zapatas 
Lee, William E 
Farnan, Ian 

Abstract

ZrC1-x (sub-stoichiometric zirconium carbide), a group IV transition metal carbide, is being considered for various high temperature applications. Departure from stoichiometry changes the thermo-physical response of the material. Reported thermo-physical properties exhibit, in some cases, a degree of scatter with one likely contributor to this being the uncertainty in the C/Zr ratio of the samples produced. Conventional, methods for assigning C/Zr to samples are determined either by nominal stochiometric ratios or combustion carbon analysis. In this study, a range of stoichiometries of hot-pressed ZrC1-x were examined by SEM, XRD, Raman spectroscopy and static 13C NMR spectroscopy and used as a basis to correct the C/Zr. Graphite, amorphous, and ZrC1-x carbon signatures are observed in the 13C NMR spectra of samples and are determined to vary in intensity with sintering temperature and stoichiometry. In this study a method is outlined to quantify the stoichiometry of ZrC1-x and free carbon phases, providing an improvement over the sole use and reliance of widely adopted bulk carbon combustion analysis. We report significantly lower C/Zr values determined by 13C NMR analysis compared with carbon analyser and nominal methods. Furthermore, the location of carbon disassociated from the ZrC1-x structure is analysed using SEM and Raman spectroscopy.

Description

Keywords

Journal Title

Scientific reports

Conference Name

Journal ISSN

2045-2322

Volume Title

10

Publisher