Repository logo
 

Sodium Ion Conductivity in Superionic IL-Impregnated Metal-Organic Frameworks: Enhancing Stability Through Structural Disorder.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Nozari, Vahid 
Calahoo, Courtney 
Tuffnell, Joshua M 
Adelhelm, Philipp 
Wondraczek, Katrin 

Abstract

Metal-organic frameworks (MOFs) are intriguing host materials in composite electrolytes due to their ability for tailoring host-guest interactions by chemical tuning of the MOF backbone. Here, we introduce particularly high sodium ion conductivity into the zeolitic imidazolate framework ZIF-8 by impregnation with the sodium-salt-containing ionic liquid (IL) (Na0.1EMIM0.9)TFSI. We demonstrate an ionic conductivity exceeding 2 × 10-4 S · cm-1 at room temperature, with an activation energy as low as 0.26 eV, i.e., the highest reported performance for room temperature Na+-related ion conduction in MOF-based composite electrolytes to date. Partial amorphization of the ZIF-backbone by ball-milling results in significant enhancement of the composite stability towards exposure to ambient conditions, up to 20 days. While the introduction of network disorder decelerates IL exudation and interactions with ambient contaminants, the ion conductivity is only marginally affected, decreasing with decreasing crystallinity but still maintaining superionic behavior. This highlights the general importance of 3D networks of interconnected pores for efficient ion conduction in MOF/IL blends, whereas pore symmetry is a less stringent condition.

Description

Keywords

Journal Title

Scientific reports

Conference Name

Journal ISSN

2045-2322

Volume Title

10

Publisher

Sponsorship
Royal Society (UF150021)
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) (681652)
European Research Council (681652)