Constrained Bayesian optimization for automatic chemical design using variational autoencoders.

Authors
Griffiths, Ryan-Rhys  ORCID logo  https://orcid.org/0000-0003-3117-4559
Hernández-Lobato, José Miguel 

Loading...
Thumbnail Image
Type
Article
Change log
Abstract

Automatic Chemical Design is a framework for generating novel molecules with optimized properties. The original scheme, featuring Bayesian optimization over the latent space of a variational autoencoder, suffers from the pathology that it tends to produce invalid molecular structures. First, we demonstrate empirically that this pathology arises when the Bayesian optimization scheme queries latent space points far away from the data on which the variational autoencoder has been trained. Secondly, by reformulating the search procedure as a constrained Bayesian optimization problem, we show that the effects of this pathology can be mitigated, yielding marked improvements in the validity of the generated molecules. We posit that constrained Bayesian optimization is a good approach for solving this kind of training set mismatch in many generative tasks involving Bayesian optimization over the latent space of a variational autoencoder.

Publication Date
2019-11-18
Online Publication Date
Acceptance Date
Keywords
Journal Title
Chemical science
Journal ISSN
2041-6520
Volume Title
11
Publisher