Show simple item record

dc.contributor.authorRaninga, RD
dc.contributor.authorJagt, Robert
dc.contributor.authorBéchu, S
dc.contributor.authorHuq, TN
dc.contributor.authorLi, W
dc.contributor.authorNikolka, Mark
dc.contributor.authorLin, YH
dc.contributor.authorSun, M
dc.contributor.authorLi, Z
dc.contributor.authorLi, W
dc.contributor.authorBouttemy, M
dc.contributor.authorFrégnaux, M
dc.contributor.authorSnaith, HJ
dc.contributor.authorSchulz, P
dc.contributor.authorMacManus-Driscoll, JL
dc.contributor.authorHoye, Robert
dc.date.accessioned2020-05-12T11:58:37Z
dc.date.available2020-05-12T11:58:37Z
dc.date.issued2020-09
dc.identifier.issn2211-2855
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/305293
dc.description.abstractThin (approximately 10 nm) oxide buffer layers grown over lead-halide perovskite device stacks are critical for protecting the perovskite against mechanical and environmental damage. However, the limited perovskite stability restricts the processing methods and temperatures (<=110 C) that can be used to deposit the oxide overlayers, with the latter limiting the electronic properties of the oxides achievable. In this work, we demonstrate an alternative to existing methods that can grow pinhole-free TiOx (x = 2.00+/-0.05) films with the requisite thickness in <1 min without vacuum. This technique is atmospheric pressure chemical vapor deposition (AP-CVD). The rapid but soft deposition enables growth temperatures of >=180 {\deg}C to be used to coat the perovskite. This is >=70 {\deg}C higher than achievable by current methods and results in more conductive TiOx films, boosting solar cell efficiencies by >2%. Likewise, when AP-CVD SnOx (x ~ 2) is grown on perovskites, there is also minimal damage to the perovskite beneath. The SnOx layer is pinhole-free and conformal, which reduces shunting in devices, and increases steady-state efficiencies from 16.5% (no SnOx) to 19.4% (60 nm SnOx), with fill factors reaching 84%. This work shows AP-CVD to be a versatile technique for growing oxides on thermally-sensitive materials.
dc.publisherElsevier
dc.rightsAll rights reserved
dc.titleStrong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides
dc.typeArticle
prism.publicationDate2020
prism.publicationNameNano Energy
prism.volume75
dc.identifier.doi10.17863/CAM.52379
dcterms.dateAccepted2020-05-08
rioxxterms.versionofrecord10.1016/j.nanoen.2020.104946
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2020-09-01
dc.contributor.orcidJagt, Robert [0000-0002-0517-3758]
dc.contributor.orcidLin, YH [0000-0001-6819-1235]
dc.contributor.orcidHoye, Robert [0000-0002-7675-0065]
dc.identifier.eissn2211-3282
rioxxterms.typeJournal Article/Review
pubs.funder-project-idRoyal Academy of Engineering (RAEng) (RF\201718\17101)
pubs.funder-project-idIsaac Newton Trust (19.07(d))
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L011700/1)
pubs.funder-project-idIsaac Newton Trust (Minute 1338(k))
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/N004272/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P007767/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M005143/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L016087/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/N509620/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P027032/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (747461)
pubs.funder-project-idEPSRC (EP/T012218/1)
cam.orpheus.successMon Jul 20 07:54:48 BST 2020 - Embargo updated
cam.orpheus.counter11
rioxxterms.freetoread.startdate2021-09-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record