Repository logo
 

Comparing BMD-derived genotoxic potency estimations across variants of the transgenic rodent gene mutation assay.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Battaion, Hannah L 
Slob, Wout 
White, Paul A 

Abstract

There is growing interest in quantitative analysis of in vivo genetic toxicity dose-response data, and use of point-of-departure (PoD) metrics such as the benchmark dose (BMD) for human health risk assessment (HHRA). Currently, multiple transgenic rodent (TGR) assay variants, employing different rodent strains and reporter transgenes, are used for the assessment of chemically-induced genotoxic effects in vivo. However, regulatory issues arise when different PoD values (e.g., lower BMD confidence intervals or BMDLs) are obtained for the same compound across different TGR assay variants. This study therefore employed the BMD approach to examine the ability of different TGR variants to yield comparable genotoxic potency estimates. Review of over 2000 dose-response datasets identified suitably-matched dose-response data for three compounds (ethyl methanesulfonate or EMS, N-ethyl-N-nitrosourea or ENU, and dimethylnitrosamine or DMN) across four commonly-used murine TGR variants (Muta™Mouse lacZ, Muta™Mouse cII, gpt delta and BigBlue® lacI). Dose-response analyses provided no conclusive evidence that TGR variant choice significantly influences the derived genotoxic potency estimate. This conclusion was reliant upon taking into account the importance of comparing BMD confidence intervals as opposed to directly comparing PoD values (e.g., comparing BMDLs). Comparisons with earlier works suggested that with respect to potency determination, tissue choice is potentially more important than choice of TGR assay variant. Scoring multiple tissues selected on the basis of supporting toxicokinetic information is therefore recommended. Finally, we used typical within-group variances to estimate preliminary endpoint-specific benchmark response (BMR) values across several TGR variants/tissues. We discuss why such values are required for routine use of genetic toxicity PoDs for HHRA. Environ. Mol. Mutagen. 58:632-643, 2017. © 2017 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.

Description

Keywords

benchmark dose, dose response analysis, genetic toxicology, human health risk assessment, transgenic rodent gene mutation assay, Animals, Animals, Genetically Modified, Benchmarking, DNA Damage, Dimethylnitrosamine, Dose-Response Relationship, Drug, Ethyl Methanesulfonate, Ethylnitrosourea, Humans, Mice, Mutagenicity Tests, Mutation, Risk Assessment, Rodentia, Transgenes

Journal Title

Environ Mol Mutagen

Conference Name

Journal ISSN

0893-6692
1098-2280

Volume Title

58

Publisher

Wiley