Repository logo
 

Topological framework for directional amplification in driven-dissipative cavity arrays.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Abstract

Directional amplification, in which signals are selectively amplified depending on their propagation direction, has attracted much attention as key resource for applications, including quantum information processing. Recently, several, physically very different, directional amplifiers have been proposed and realized in the lab. In this work, we present a unifying framework based on topology to understand non-reciprocity and directional amplification in driven-dissipative cavity arrays. Specifically, we unveil a one-to-one correspondence between a non-zero topological invariant defined on the spectrum of the dynamic matrix and regimes of directional amplification, in which the end-to-end gain grows exponentially with the number of cavities. We compute analytically the scattering matrix, the gain and reverse gain, showing their explicit dependence on the value of the topological invariant. Parameter regimes achieving directional amplification can be elegantly obtained from a topological 'phase diagram', which provides a guiding principle for the design of both phase-preserving and phase-sensitive multimode directional amplifiers.

Description

Keywords

cond-mat.mes-hall, cond-mat.mes-hall, quant-ph

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

11

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
The Royal Society (uf130303)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (732894)
EPSRC (2127187)