Repository logo
 

Terahertz-Based Porosity Measurement of Pharmaceutical Tablets: a Tutorial

Published version
Peer-reviewed

Change log

Authors

Bawuah, Prince 
Markl, Daniel 
Farrell, Daniel 
Evans, Mike 
Portieri, Alessia 

Abstract

Abstract: Porosity, one of the important quality attributes of pharmaceutical tablets, directly affects the mechanical properties, the mass transport and hence tablet disintegration, dissolution and ultimately the bioavailability of an orally administered drug. The ability to accurately and quickly monitor the porosity of tablets during manufacture or during the manufacturing process will enable a greater assurance of product quality. This tutorial systematically outlines the steps involved in the terahertz-based measurement method that can be used to quantify the porosity of a tablet within seconds in a non-destructive and non-invasive manner. The terahertz-based porosity measurement can be performed using one of the three main methods, which are (i) the zero-porosity approximation (ZPA); (ii) the traditional Bruggeman effective medium approximation (TB-EMA); and (iii) the anisotropic Bruggeman effective medium approximation (AB-EMA). By using a set of batches of flat-faced and biconvex tablets as a case study, the three main methods are compared and contrasted. Overall, frequency-domain signal processing coupled with the AB-EMA method was found to be most suitable approach in terms of accuracy and robustness when predicting the porosity of tablets over a range of complexities and geometries. This tutorial aims to concisely outline all the necessary steps, precautions and unique advantages associated with the terahertz-based porosity measurement method.

Description

Keywords

Article, Terahertz spectroscopy, Pharmaceutical tablet, Porosity, Effective medium approximation, Refractive index, Optical path length

Journal Title

Conference Name

Journal ISSN

1866-6892
1866-6906

Volume Title

Publisher

Springer US
Sponsorship
Innovate UK (104196)