Repository logo
 

Cerebrospinal fluid dynamics in non-acute post-traumatic ventriculomegaly

Published version
Peer-reviewed

Change log

Authors

Lalou, Afroditi D. 
Levrini, Virginia 
Czosnyka, Marek 
Gergelé, Laurent 
Garnett, Matthew 

Abstract

Abstract: Background: Post-traumatic hydrocephalus (PTH) is potentially under-diagnosed and under-treated, generating the need for a more efficient diagnostic tool. We aim to report CSF dynamics of patients with post-traumatic ventriculomegaly. Materials and methods: We retrospectively analysed post-traumatic brain injury (TBI) patients with ventriculomegaly who had undergone a CSF infusion test. We calculated the resistance to CSF outflow (Rout), AMP (pulse amplitude of intracranial pressure, ICP), dAMP (AMPplateau-AMPbaseline) and compensatory reserve index correlation coefficient between ICP and AMP (RAP). To avoid confounding factors, included patients had to be non-decompressed or with cranioplasty > 1 month previously and Rout > 6 mmHg/min/ml. Compliance was assessed using the elasticity coefficient. We also compared infusion-tested TBI patients selected for shunting versus those not selected for shunting (consultant decision based on clinical and radiological assessment and the infusion results). Finally, we used data from a group of shunted idiopathic Normal Pressure Hydrocephalus (iNPH) patients for comparison. Results: Group A consisted of 36 patients with post-traumatic ventriculomegaly and Group B of 45 iNPH shunt responders. AMP and dAMP were significantly lower in Group A than B (0.55 ± 0.39 vs 1.02 ± 0.72; p < 0.01 and 1.58 ± 1.21 vs 2.76 ± 1.5; p < 0.01. RAP baseline was not significantly different between the two. Elasticity was higher than the normal limit in all groups (average 0.18 1/ml). Significantly higher Rout was present in those with probable PTH selected for shunting compared with unshunted. Mild/moderate hydrocephalus, ex-vacuo ventriculomegaly/encephalomalacia were inconsistently reported in PTH patients. Conclusions: Rout and AMP were significantly lower in PTH compared to iNPH and did not always reflect the degree of hydrocephalus or atrophy reported on CT/MRI. Compliance appears reduced in PTH.

Description

Keywords

Research, Cerebrospinal fluid, CSF dynamics, CSF infusion test, Hydrocephalus, Traumatic brain injury, Ventriculomegaly

Journal Title

Fluids and Barriers of the CNS

Conference Name

Journal ISSN

2045-8118

Volume Title

17

Publisher

BioMed Central