Repository logo
 

Numerical study of interface cracking in composite structures using a novel geometrically nonlinear Linear Elastic Brittle Interface Model: Mixed-mode fracture conditions and application to structured interfaces

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

García-Guzmán, L 
Reinoso, J 
Valderde-González, A 
Martínez-Pañeda, Emilio  ORCID logo  https://orcid.org/0000-0002-1562-097X
Távara, L 

Abstract

Interface cracking is one of the most prominent failure modes in fibre reinforced polymer (FRP) composites. Recent trends in high-tech applications of FRP composites exploit the limits of the load bearing capacity, generally encompassing the development of notable nonlinear effects from geometrical and material signatures. In this investigation, we present a comprehensive assessment of the new Linear Elastic Brittle Interface Model (LEBIM) in geometrically nonlinear applications undergoing mixed-mode fracture conditions. This interface model for triggering fracture events is formulated through the advocation of continuum-like assumptions (for initial non-zero interface thickness) and allows the incorporation of the potential role of the in-plane deformation effects. The performance of the present interface model is demonstrated through the simulation of specimens with mixed-mode delamination, with special attention for its application in samples equipped with structured interfaces. Current predictions exhibit an excellent agreement with respect to experimental data, validating the proposed methodology.

Description

Keywords

Structured interfaces, Interface cracking, LEBIM, Fracture toughness, Mixed-mode

Journal Title

Composite Structures

Conference Name

Journal ISSN

0263-8223
1879-1085

Volume Title

248

Publisher

Elsevier BV