Repository logo
 

Automated CAD Model Generation for Structural Optimisation


Type

Thesis

Change log

Authors

Yin, Ge 

Abstract

Computer-aided design (CAD) models play a crucial role in the design, manufacturing and maintenance of products. Therefore, the mesh-based finite element descriptions common in structural optimisation must be first translated into CAD models. Currently, this translation either can be performed semi-manually or fails to reserve the structural optimality found by the structural optimisation due to the intrinsic difference in geometric representation between finite element mesh and CAD model.

This thesis propose a fully automated and topologically accurate approach to synthesise structurally sound parametric CAD models from topology-optimised finite element models to fill the long-existing gap between structural optimisation and CAD systems. This approach successfully preserves the optimal structural performance during the mesh-CAD conversion.

The solution provided in this thesis is to first convert the topology-optimised structure into a spatial frame structure and then to regenerate it in a CAD system using standard constructive solid geometry (CSG) operations. The obtained parametric CAD models are compact, that is, have as few as possible geometric parameters, which makes them ideal for editing and further processing within a CAD system. The critical task of converting the topology-optimised structure into an optimal spatial frame structure is accomplished in several steps. The first step is to generate a one-voxel-wide voxel chain model from the topology-optimised voxel model using a topology-preserving skeletonisation algorithm from digital topology. The undirected graph defined by the voxel chain model yields a spatial frame structure after processing it with the proposed graph algorithms. Subsequently, the cross-sections and layout of the frame members are optimised to recover its optimality, which may have been compromised during the conversion process. At last, the obtained frame structure is generated in a CAD system by repeatedly combining primitive solids, like cylinders and spheres, using boolean operations. The resulting solid model is a boundary representation (B-Rep) consisting of trimmed non-uniform rational B-spline (NURBS) curves and surfaces.

The numerical studies in this thesis clarify that the converted spatial frame structures are with equivalent structural performance. Moreover, CAD models generated from the spatial frame structures have significantly fewer geometric degree of freedom compared to the topology-optimised structures. Though the numerical studies use topology-optimised structures as input and compact CSG models as output, this thesis also provides the way to extend the proposed generation process to taking other optimised meshes and producing outputs of various geometric representations. This offers a wide range of possible applications and brings new thoughts to industrial design and manufacturing.

Description

Date

2019-10-07

Advisors

Cirak, Fehmi

Keywords

Topology Optimisation, Computer-Aided Design, Mesh Reconstruction, Digital Topology, Homotopic Skeletonisation, CSG Tree

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Chinese Scholarship Council