Revealing the intrinsic nature of the mid-gap defects in amorphous Ge 2 Sb 2 Te 5
Publication Date
2019-07-11Journal Title
Nature Communications
Publisher
Nature Publishing Group UK
Volume
10
Issue
1
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Konstantinou, K., Mocanu, F. C., Lee, T., & Elliott, S. R. (2019). Revealing the intrinsic nature of the mid-gap defects in amorphous Ge 2 Sb 2 Te 5. Nature Communications, 10 (1)https://doi.org/10.1038/s41467-019-10980-w
Abstract
Abstract: Understanding the relation between the time-dependent resistance drift in the amorphous state of phase-change materials and the localised states in the band gap of the glass is crucial for the development of memory devices with increased storage density. Here a machine-learned interatomic potential is utilised to generate an ensemble of glass models of the prototypical phase-change alloy, Ge2Sb2Te5, to obtain reliable statistics. Hybrid density-functional theory is used to identify and characterise the geometric and electronic structures of the mid-gap states. 5-coordinated Ge atoms are the local defective bonding environments mainly responsible for these electronic states. The structural motif for the localisation of the mid-gap states is a crystalline-like atomic environment within the amorphous network. An extra electron is trapped spontaneously by these mid-gap states, creating deep traps in the band gap. The results provide significant insights that can help to rationalise the design of multi-level-storage memory devices.
Keywords
Article, /639/638/563/606, /639/638/563/979, /639/638/563/981, /639/301/119/995, /639/301/1005/1008, /119/118, /119, article
Identifiers
s41467-019-10980-w, 10980
External DOI: https://doi.org/10.1038/s41467-019-10980-w
This record's URL: https://www.repository.cam.ac.uk/handle/1810/307837
Rights
Licence:
https://creativecommons.org/licenses/by/4.0/