Repository logo
 

Investigating the role of curvature on the formation and thermal transformations of soot


Type

Thesis

Change log

Authors

Abstract

In this work, the role of curved polycyclic aromatic hydrocarbons (cPAH) on the initial formation mechanism and thermal transformations of soot was explored. Experimental and computational techniques were used to probe the integration, presence and impact of internal pentagonal rings on the nucleation mechanism of these particulates. A significant charge polarisation was found to occur when an internal pentagonal ring pyramidalises the aromatic network. Phase contrast transmission electron microscopy allowed for the extent of conjugation and degree of curvature to be determined in early soot nanoparticulates with 15 aromatic rings and two pentagons being the median species. The dipole moment of such a species was calculated to be 5.32 debye. The polarity was found to be persistent at flame temperatures with inversion and fluctuations being minimal. Homogeneous nucleation was considered with homodimerisation energies with one or two internal pentagonal rings within cPAH found to be comparable in energy to flat PAH (fPAH) homodimers of similar weight, with more pentagons reducing the binding energy. Ion-induced nucleation was considered with binding energies calculated between chemi-ions and cPAH suggesting small stable clusters at flame temperatures. However, physical and ion-induced nucleation of cPAH were found to be insufficient alone to explain the formation of soot. The impact of curvature on the reactivity of PAH were then studied. Strong crosslinks between σ-radicals and cPAH were found to form at their rim due to decreased aromaticity. Partially saturated rim-based pentagonal rings were also found to form localised π-radicals that allow stacked and bonded complexes to form, suggesting a covalently stabilised soot nucleation. Finally, the curved geometry of highly annealed soot, otherwise known as non-graphitising carbon, was explored using annealed molecular dynamics simulations and a discrete mesh analysis method. Analysis of the angular defect of the meshes revealed an excess of negative curvature. The coexistence of curved and layered ribbon-like structures was found to be possible due to the presence of a small number of non-sp² defects such as screw dislocations and free edges, which will impact the synthesis of novel carbon materials and the oxidation of thermally annealed soot. The incorporation of curvature and pentagonal rings is therefore considered critical for understanding the properties, formation and destruction of combustion generated carbonaceous particles and other carbon materials.

Description

Date

2020-12-18

Advisors

Kraft, Markus

Keywords

soot, combustion, non-graphitising carbon, flexoelectricity

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
This project is supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.