A generative model for electron paths
View / Open Files
Authors
Bradshaw, J
Kusner, MJ
Paige, B
Segler, MHS
Hernández-Lobato, JM
Publication Date
2019-01-01Journal Title
7th International Conference on Learning Representations, ICLR 2019
Type
Conference Object
This Version
VoR
Metadata
Show full item recordCitation
Bradshaw, J., Kusner, M., Paige, B., Segler, M., & Hernández-Lobato, J. (2019). A generative model for electron paths. 7th International Conference on Learning Representations, ICLR 2019 https://doi.org/10.17863/CAM.55900
Abstract
Chemical reactions can be described as the stepwise redistribution of electrons in molecules. As such, reactions are often depicted using “arrow-pushing” diagrams which show this movement as a sequence of arrows. We propose an electron path prediction model (ELECTRO) to learn these sequences directly from raw reaction data. Instead of predicting product molecules directly from reactant molecules in one shot, learning a model of electron movement has the benefits of (a) being easy for chemists to interpret, (b) incorporating constraints of chemistry, such as balanced atom counts before and after the reaction, and (c) naturally encoding the sparsity of chemical reactions, which usually involve changes in only a small number of atoms in the reactants. We design a method to extract approximate reaction paths from any dataset of atom-mapped reaction SMILES strings. Our model achieves excellent performance on an important subset of the USPTO reaction dataset, comparing favorably to the strongest baselines. Furthermore, we show that our model recovers a basic knowledge of chemistry without being explicitly trained to do so.
Sponsorship
EPSRC
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.55900
This record's URL: https://www.repository.cam.ac.uk/handle/1810/308812
Rights
All rights reserved