Repository logo
 

A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis

Published version
Peer-reviewed

Change log

Authors

Ramond, Anna 
Howson, Joanna 

Abstract

Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N=246,139), total iron binding capacity (N=135,430), iron (N=163,511) and transferrin saturation (N=131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation.

Description

Keywords

Humans, Anemia, Iron-Deficiency, Biomarkers, Denmark, Ferritins, Genetic Loci, Genetic Variation, Genome-Wide Association Study, Genotype, Homeostasis, Iceland, Iron, Iron Overload, Phenotype, Risk Assessment, Risk Factors, Transferrin, United Kingdom

Journal Title

Communications Biology

Conference Name

Journal ISSN

2399-3642
2399-3642

Volume Title

Publisher

Nature Research
Sponsorship
Department of Health (via National Institute for Health Research (NIHR)) (NIHR BTRU-2014-10024)
Cambridge University Hospitals NHS Foundation Trust (CUH) (unknown)
British Heart Foundation (CH/12/2/29428)
Medical Research Council (MR/L003120/1)
British Heart Foundation (None)
Medical Research Council (MR/S003746/1)
British Heart Foundation (RG/18/13/33946)
Participants in the INTERVAL randomised controlled trial were recruited with the active collaboration of NHS Blood and Transplant England (www.nhsbt.nhs.uk), which has supported field work and other elements of the trial. DNA extraction and genotyping was co-funded by the National Institute for Health Research (NIHR), the NIHR BioResource (http://bioresource.nihr.ac.uk/) and the NIHR [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust] [*]. The academic coordinating centre for INTERVAL was supported by core funding from: NIHR Blood and Transplant Research Unit in Donor Health and Genomics (NIHR BTRU-2014-10024), UK Medical Research Council (MR/L003120/1), British Heart Foundation (SP/09/002; RG/13/13/30194; RG/18/13/33946) and the NIHR [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust] [The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care]. A complete list of the investigators and contributors to the INTERVAL trial is provided in reference 73. The academic coordinating centre would like to thank blood donor centre staff and blood donors for participating in the INTERVAL trial. Professor John Danesh is funded by the National Institute for Health Research [Senior Investigator Award]. Will Astle, Joanna Howson and Tao Jiang are funded by the National Institute for Health Research [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust]. Angela M Wood and Elias Allara are supported by EC-Innovative Medicines Initiative (BigData@Heart). Praveen Surendran is supported by a Rutherford Fund Fellowship from the Medical Research Council grant MR/S003746/1. This work was supported by Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and Wellcome. The Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). The Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 115881 (RHAPSODY) (Karina Banasik and Søren Brunak). The Danish Administrative Regions; The Danish Administrative Regions’ Bio- and Genome Bank; The authors thank all the blood banks in Denmark for both collecting and contributing data to this study. Danish Blood Donor Research Fund. Aarhus University, Copenhagen University Hospital Research Fund. Competing interests: Henrik Ullum received an unrestricted research grant form Novartis. Cristian Erikstrup received an unrestricted research grant from Abbott. Søren Brunak reports grants from Innovation Fund Denmark, grants from Novo Nordisk Foundation during the conduct of the study; and personal fees from Intomics A/S and Proscion A/S, outside the submitted work. For the authors who are affiliated with deCODE genetics/Amgen, we declare competing financial interests as employees.