Repository logo
 

Parametric instability in a free-evolving warped protoplanetary disc

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Ogilvie, GI 
Mayer, L 

Abstract

Warped accretion discs of low viscosity are prone to hydrodynamic instability due to parametric resonance of inertial waves as confirmed by local simulations. Global simulations of warped discs, using either smoothed particle hydrodynamics (SPH) or grid-based codes, are ubiquitous but no such instability has been seen. Here we utilize a hybrid Godunov-type Lagrangian method to study parametric instability in global simulations of warped Keplerian discs at unprecedentedly high resolution (up to 120 million particles). In the global simulations, the propagation of the warp is well described by the linear bending-wave equations before the instability sets in. The ensuing turbulence, captured for the first time in a global simulation, damps relative orbital inclinations and leads to a decrease in the angular momentum deficit. As a result, the warp undergoes significant damping within one bending-wave crossing time. Observed protoplanetary disc warps are likely maintained by companions or aftermath of disc breaking.

Description

Keywords

accretion, accretion discs, hydrodynamics, instabilities, waves

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

500

Publisher

Oxford University Press (OUP)

Rights

All rights reserved
Sponsorship
STFC (ST/T00049X/1)
Science and Technology Facilities Council (ST/P000673/1)