Show simple item record

dc.contributor.authorParadisanos, Ioannis
dc.contributor.authorWang, Gang
dc.contributor.authorAlexeev, Evgeny M
dc.contributor.authorCadore, Alisson R
dc.contributor.authorMarie, Xavier
dc.contributor.authorFerrari, Andrea C
dc.contributor.authorGlazov, Mikhail M
dc.contributor.authorUrbaszek, Bernhard
dc.date.accessioned2020-11-18T10:04:42Z
dc.date.available2020-11-18T10:04:42Z
dc.date.issued2021-01-22
dc.identifier.issn2041-1723
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/313041
dc.description.abstractEnergy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer transition metal dichalcogenides in optoelectronics. The primary stages of carrier relaxation affect a plethora of subsequent physical mechanisms. Here we measure light scattering and emission in tungsten diselenide monolayers close to the laser excitation energy (down to ~0.6 meV). We reveal a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state. We find a period ~15 meV for 7 peaks below (Stokes) and 5 peaks above (anti-Stokes) the laser excitation energy, with a strong temperature dependence. These are assigned to phonon cascades, whereby carriers undergo phonon-induced transitions between real states above the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the Λ-valley of the Brillouin zone participate in the cascade process of tungsten diselenide monolayers. This provides a fundamental understanding of the first stages of carrier-phonon interaction, useful for optoelectronic applications of layered semiconductors.
dc.format.mediumElectronic
dc.languageeng
dc.publisherNature Research
dc.rightsAll rights reserved
dc.titleEfficient phonon cascades in WSe2 monolayers.
dc.typeArticle
prism.issueIdentifier1
prism.publicationDate2021
prism.publicationNameNat Commun
prism.startingPage538
prism.volume12
dc.identifier.doi10.17863/CAM.60141
dcterms.dateAccepted2020-11-10
rioxxterms.versionofrecord10.1038/s41467-020-20244-7
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2021-01-22
dc.contributor.orcidParadisanos, Ioannis [0000-0001-8310-710X]
dc.contributor.orcidAlexeev, Evgeny M [0000-0002-8149-6364]
dc.contributor.orcidMarie, Xavier [0000-0002-7772-2517]
dc.contributor.orcidFerrari, Andrea C [0000-0003-0907-9993]
dc.contributor.orcidGlazov, Mikhail M [0000-0003-4462-0749]
dc.contributor.orcidUrbaszek, Bernhard [0000-0003-0226-7983]
dc.identifier.eissn2041-1723
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L016087/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (696656)
pubs.funder-project-idEPSRC (via University of Manchester) (R119256)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (785219)
pubs.funder-project-idEuropean Research Council (842251)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/G042357/1)
pubs.funder-project-idEuropean Research Council (319277)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/K01711X/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/K017144/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (881603)
cam.issuedOnline2021-01-22
cam.orpheus.successTue Feb 01 19:00:23 GMT 2022 - Embargo updated
cam.orpheus.counter10
rioxxterms.freetoread.startdate2021-01-22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record