Show simple item record

dc.contributor.authorParadisanos, Ioannisen
dc.contributor.authorWang, Gangen
dc.contributor.authorAlexeev, Evgenyen
dc.contributor.authorCadore, Alissonen
dc.contributor.authorMarie, Xavieren
dc.contributor.authorFerrari, Andreaen
dc.contributor.authorGlazov, Mikhail Men
dc.contributor.authorUrbaszek, Bernharden
dc.date.accessioned2020-11-18T10:04:42Z
dc.date.available2020-11-18T10:04:42Z
dc.date.issued2021-01-22en
dc.identifier.issn2041-1723
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/313041
dc.description.abstractEnergy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer (1L) transition metal dichaclogenides (TMDs) in optoelectronics. We measure light scattering and emission in 1L-WSe$_2$ close to the laser excitation energy (down to~$\sim$0.6meV). We detect a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state, in addition to sharp, non-periodic Raman lines related to the phonon modes. We find a period $\sim$15meV for peaks both below (Stokes) and above (anti-Stokes) the laser excitation energy. We detect 7 maxima from 78K to room temperature in the Stokes signal and 5 in the anti-Stokes, of increasing intensity with temperature. We assign these to phonon cascades, whereby carriers undergo phonon-induced transitions between real states in the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the $\Lambda$-valley of the Brillouin zone participate in the cascade process of 1L-WSe$_2$. The observations explain the primary stages of carrier relaxation, not accessible so far in time-resolved experiments. This is important for optoelectronic applications, such as photodetectors and lasers, because these determine the recovery rate and, as a consequence, the devices' speed and efficiency.
dc.format.mediumElectronicen
dc.languageengen
dc.publisherNature Research
dc.rightsAll rights reserved
dc.titleEfficient phonon cascades in WSe<sub>2</sub> monolayers.en
dc.typeArticle
prism.issueIdentifier1en
prism.publicationDate2021en
prism.publicationNameNature communicationsen
prism.startingPage538
prism.volume12en
dc.identifier.doi10.17863/CAM.60141
dcterms.dateAccepted2020-11-10en
rioxxterms.versionofrecord10.1038/s41467-020-20244-7en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2021-01-22en
dc.contributor.orcidParadisanos, Ioannis [0000-0001-8310-710X]
dc.contributor.orcidAlexeev, Evgeny [0000-0002-8149-6364]
dc.contributor.orcidCadore, Alisson [0000-0003-1081-0915]
dc.contributor.orcidMarie, Xavier [0000-0002-7772-2517]
dc.contributor.orcidFerrari, Andrea [0000-0003-0907-9993]
dc.contributor.orcidGlazov, Mikhail M [0000-0003-4462-0749]
dc.contributor.orcidUrbaszek, Bernhard [0000-0003-0226-7983]
dc.identifier.eissn2041-1723
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/L016087/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (696656)
pubs.funder-project-idEPSRC (via University of Manchester) (R119256)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (785219)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (842251)
pubs.funder-project-idEPSRC (EP/G042357/1)
pubs.funder-project-idEC FP7 ERC (319277)
pubs.funder-project-idEPSRC (EP/K01711X/1)
pubs.funder-project-idEPSRC (EP/K017144/1)
cam.orpheus.counter10*
rioxxterms.freetoread.startdate2023-11-18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record