Repository logo
 

Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Mišeikis, Vaidotas  ORCID logo  https://orcid.org/0000-0001-6263-4250
Marconi, Simone 
Montanaro, Alberto 
Martini, Leonardo 

Abstract

We report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene/polymer/graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction. Both graphene layers are fabricated using aligned single-crystal graphene arrays grown by chemical vapor deposition. The use of PVA yields a low charge inhomogeneity ∼8 × 1010 cm-2 at the charge neutrality point, and a large Seebeck coefficient ∼140 μV K-1, enhancing the PTE effect. Our devices are the fastest GPDs operating with zero dark current, showing a flat frequency response up to 67 GHz without roll-off. This performance is achieved on a passive, low-cost, photonic platform, and does not rely on nanoscale plasmonic structures. This, combined with scalability and ease of integration, makes our GPDs a promising building block for next-generation optical communication devices.

Description

Keywords

graphene, integrated photonics, optoelectronics, photodetectors, photothermoelectric effect, polymeric dielectric

Journal Title

ACS Nano

Conference Name

Journal ISSN

1936-0851
1936-086X

Volume Title

14

Publisher

American Chemical Society (ACS)

Rights

Publisher's own licence
Sponsorship
Engineering and Physical Sciences Research Council (EP/K01711X/1)
Engineering and Physical Sciences Research Council (EP/K017144/1)
European Research Council (319277)
Engineering and Physical Sciences Research Council (EP/L016087/1)
European Research Council (842251)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (785219)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (881603)