Repository logo
 

The structure of the lithosphere and upper mantle beneath the Eastern Mediterranean and Middle East

Published version
Peer-reviewed

Change log

Authors

Abstract

jats:titleAbstract</jats:title>jats:pSurface velocity measurements show that the Middle East is one of the most actively deforming regions of the continents. The structure of the underlying lithosphere and convecting upper mantle can be explored by combining three types of measurement. The gravity field from satellite and surface measurements is supported by the elastic properties of the lithosphere and by the underlying mantle convection. Three dimensional shear wave velocities can be determined by tomographic inversion of surface wave velocities. The shear wave velocities of the mantle are principally controlled by temperature, rather than by composition. The mantle composition can be obtained from that of young magmas. Application of these three types of observation to the Eastern Mediterranean and Middle East shows that the lithosphere thickness in most parts is no more than 50-70 km, and that the elastic thickness is less than 5 km. Because the lithosphere is so thin and weak the pattern of the underlying convection is clearly visible in the topography and gravity, as well as controlling the volcanism. The convection pattern takes the form of spokes: lines of hot upwelling mantle, joining hubs where the upwelling is three dimensional. It is the same as that seen in high Rayleigh number laboratory and numerical experiments. The lithospheric thicknesses beneath the seafloor to the SW of the Hellenic Arc and beneath the NE part of the Arabian Shield are more than 150 km and the elastic thicknesses are 30–40 km.</jats:p>

Description

Funder: University of Cambridge

Keywords

37 Earth Sciences, 3703 Geochemistry, 3705 Geology, 3706 Geophysics

Journal Title

Mediterranean Geoscience Reviews

Conference Name

Journal ISSN

2661-863X
2661-8648

Volume Title

2

Publisher

Springer Science and Business Media LLC