Show simple item record

dc.contributor.authorZhao, B
dc.contributor.authorLian, Y
dc.contributor.authorCui, L
dc.contributor.authorDivitini, Giorgio
dc.contributor.authorKusch, Gunnar
dc.contributor.authorRuggeri, E
dc.contributor.authorAuras, Florian
dc.contributor.authorLi, W
dc.contributor.authorYang, D
dc.contributor.authorZhu, B
dc.contributor.authorOliver, Rachel
dc.contributor.authorMacManus-Driscoll, JL
dc.contributor.authorStranks, Samuel
dc.contributor.authorDi, D
dc.contributor.authorFriend, Richard
dc.date.accessioned2020-12-16T00:30:44Z
dc.date.available2020-12-16T00:30:44Z
dc.date.issued2020-11-01
dc.identifier.issn2520-1131
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/315155
dc.description.abstract© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Light-emitting diodes based on halide perovskites have recently reached external quantum efficiencies of over 20%. However, the performance of visible perovskite light-emitting diodes has been hindered by non-radiative recombination losses and limited options for charge-transport materials that are compatible with perovskite deposition. Here, we report efficient, green electroluminescence from mixed-dimensional perovskites deposited on a thin (~1 nm) lithium fluoride layer on an organic semiconductor hole-transport layer. The highly polar dielectric interface acts as an effective template for forming high-quality bromide perovskites on otherwise incompatible hydrophobic charge-transport layers. The control of crystallinity and dimensionality of the perovskite layer is achieved by using tetraphenylphosphonium chloride as an additive, leading to external photoluminescence quantum efficiencies of around 65%. With this approach, we obtain light-emitting diodes with external quantum efficiencies of up to 19.1% at high brightness (>1,500 cd m−2).
dc.publisherNature Research
dc.rightsAll rights reserved
dc.titleEfficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface
dc.typeArticle
prism.endingPage710
prism.issueIdentifier11
prism.publicationDate2020
prism.publicationNameNature Electronics
prism.startingPage704
prism.volume3
dc.identifier.doi10.17863/CAM.62260
dcterms.dateAccepted2020-09-15
rioxxterms.versionofrecord10.1038/s41928-020-00487-4
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2020-11-01
dc.contributor.orcidDivitini, Giorgio [0000-0003-2775-610X]
dc.contributor.orcidKusch, Gunnar [0000-0003-2743-1022]
dc.contributor.orcidAuras, Florian [0000-0003-1709-4384]
dc.contributor.orcidOliver, Rachel [0000-0003-0029-3993]
dc.contributor.orcidStranks, Samuel [0000-0002-8303-7292]
dc.contributor.orcidFriend, Richard [0000-0001-6565-6308]
dc.identifier.eissn2520-1131
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R025193/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L011700/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/N004272/1)
pubs.funder-project-idEuropean Research Council (670405)
pubs.funder-project-idEuropean Research Council (756962)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Research Infrastructures (RI) (823717)
cam.issuedOnline2020-10-19
cam.orpheus.counter40


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record