Show simple item record

dc.contributor.authorMiller, Jason
dc.contributor.authorQian, Wei
dc.date.accessioned2020-12-22T19:00:25Z
dc.date.available2020-12-22T19:00:25Z
dc.date.issued2019-12-21
dc.date.submitted2018-12-16
dc.identifier.issn0178-8051
dc.identifier.others00440-019-00949-7
dc.identifier.other949
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/315467
dc.descriptionFunder: University of Cambridge
dc.description.abstractAbstract: We prove that the geodesics associated with any metric generated from Liouville quantum gravity (LQG) which satisfies certain natural hypotheses are necessarily singular with respect to the law of any type of SLEκ. These hypotheses are satisfied by the LQG metric for γ=8/3 constructed by the first author and Sheffield, and subsequent work by Gwynne and the first author has shown that there is a unique metric which satisfies these hypotheses for each γ∈(0, 2). As a consequence of our analysis, we also establish certain regularity properties of LQG geodesics which imply, among other things, that they are conformally removable.
dc.languageen
dc.publisherSpringer Berlin Heidelberg
dc.rightsAttribution 4.0 International (CC BY 4.0)en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectArticle
dc.subjectPrimary 60D05
dc.subjectSecondary 60J67
dc.titleThe geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions
dc.typeArticle
dc.date.updated2020-12-22T19:00:25Z
prism.endingPage709
prism.issueIdentifier3-4
prism.publicationNameProbability Theory and Related Fields
prism.startingPage677
prism.volume177
dc.identifier.doi10.17863/CAM.62574
rioxxterms.versionofrecord10.1007/s00440-019-00949-7
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidQian, Wei [0000-0002-4779-4042]
dc.identifier.eissn1432-2064


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's licence is described as Attribution 4.0 International (CC BY 4.0)