5G network slicing with QKD and quantum-safe security
dc.contributor.author | Wright, P | en |
dc.contributor.author | White, C | en |
dc.contributor.author | Parker, RC | en |
dc.contributor.author | Pegon, JS | en |
dc.contributor.author | Menchetti, M | en |
dc.contributor.author | Pearse, J | en |
dc.contributor.author | Bahrami, A | en |
dc.contributor.author | Moroz, A | en |
dc.contributor.author | Wonfor, Adrian | en |
dc.contributor.author | Penty, Richard | en |
dc.contributor.author | Spiller, TP | en |
dc.contributor.author | Lord, A | en |
dc.date.accessioned | 2021-01-08T12:08:50Z | |
dc.date.available | 2021-01-08T12:08:50Z | |
dc.date.issued | 2021-03-01 | en |
dc.identifier.issn | 1943-0620 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/315915 | |
dc.description.abstract | We demonstrate how the 5G network slicing model can be extended to address data security requirements. In this work we demonstrate two different slice configurations, with different encryption requirements, representing two diverse use-cases for 5G networking: namely, an enterprise application hosted at a metro network site, and a content delivery network. We create a modified software-defined networking (SDN) orchestrator which calculates and provisions network slices according to the requirements, including encryption backed by quantum key distribution (QKD), or other methods. Slices are automatically provisioned by SDN orchestration of network resources, allowing selection of encrypted links as appropriate, including those which use standard Diffie-Hellman key exchange, QKD and quantum-resistant algorithms (QRAs), as well as no encryption at all. We show that the set-up and tear-down times of the network slices takes of the order of 1-2 minutes, which is an order of magnitude improvement over manually provisioning a link today. | |
dc.publisher | Optical Society of America | |
dc.rights | All rights reserved | |
dc.rights.uri | ||
dc.title | 5G network slicing with QKD and quantum-safe security | en |
dc.type | Article | |
prism.endingPage | 40 | |
prism.issueIdentifier | 3 | en |
prism.publicationDate | 2021 | en |
prism.publicationName | Journal of Optical Communications and Networking | en |
prism.startingPage | 33 | |
prism.volume | 13 | en |
dc.identifier.doi | 10.17863/CAM.63026 | |
dcterms.dateAccepted | 2020-12-22 | en |
rioxxterms.versionofrecord | 10.1364/JOCN.413918 | en |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2021-03-01 | en |
dc.contributor.orcid | Parker, RC [0000-0002-0440-1034] | |
dc.contributor.orcid | Wonfor, Adrian [0000-0003-2219-7900] | |
dc.contributor.orcid | Penty, Richard [0000-0003-4605-1455] | |
dc.identifier.eissn | 1943-0639 | |
rioxxterms.type | Journal Article/Review | en |
pubs.funder-project-id | EPSRC (via University of York) (EP/M013472/1) | |
cam.orpheus.success | Mon Feb 15 07:31:03 GMT 2021 - Embargo updated | * |
cam.orpheus.counter | 3 | * |
rioxxterms.freetoread.startdate | 2021-03-01 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge