Repository logo
 

Avalanche criticality during ferroelectric/ferroelastic switching

Published version
Peer-reviewed

Change log

Authors

Nataf, Guillaume F.  ORCID logo  https://orcid.org/0000-0001-9215-4717
Salje, Ekhard K. H. 

Abstract

Abstract: Field induced domain wall displacements define ferroelectric/ferroelastic hysteresis loops, which are at the core of piezoelectric, magnetoelectric and memristive devices. These collective displacements are scale invariant jumps with avalanche characteristics. Here, we analyse the spatial distribution of avalanches in ferroelectrics with different domain and transformation patterns: Pb(Mg1/3Nb2/3)O3–PbTiO3 contains complex domains with needles and junction patterns, while BaTiO3 has parallel straight domains. Nevertheless, their avalanche characteristics are indistinguishable. The energies, areas and perimeters of the switched regions are power law distributed with exponents close to predicted mean field values. At the coercive field, the area exponent decreases, while the fractal dimension increases. This fine structure of the switching process has not been detected before and suggests that switching occurs via criticality at the coercive field with fundamentally different switching geometries at and near this critical point. We conjecture that the domain switching process in ferroelectrics is universal at the coercive field.

Description

Keywords

Article, /639/301/119/996, /639/766/530/2795, /123, /128, /132, article

Journal Title

Nature Communications

Conference Name

Journal ISSN

2041-1723

Volume Title

12

Publisher

Nature Publishing Group UK
Sponsorship
RCUK | Engineering and Physical Sciences Research Council (EPSRC) ((No.EP/P024904/1))