Show simple item record

dc.contributor.authorSpikes, Tobiasen
dc.contributor.authorMontgomery, Martinen
dc.contributor.authorWalker, Johnen
dc.date.accessioned2021-01-13T00:30:33Z
dc.date.available2021-01-13T00:30:33Z
dc.date.issued2021-02en
dc.identifier.issn0027-8424
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/316108
dc.description.abstractThe ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. Disruption of the interface between dimers by mutation affects the morphology of the cristae severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76-95°. These particles represent active dimeric ATP synthase. Some angular variations arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer-monomer interaction is mediated mainly by j-subunits attached to the surface of wedge-shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other inter-wedge contacts, moulding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae.
dc.format.mediumPrinten
dc.languageengen
dc.publisherNational Academy of Sciences
dc.rightsAll rights reserved
dc.rights.uri
dc.subjectMitochondriaen
dc.subjectAnimalsen
dc.subjectCattleen
dc.subjectMitochondrial Proton-Translocating ATPasesen
dc.subjectAdenosine Triphosphateen
dc.subjectCryoelectron Microscopyen
dc.subjectProtein Conformationen
dc.subjectCatalysisen
dc.subjectModels, Molecularen
dc.subjectProtein Multimerizationen
dc.titleInterface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes.en
dc.typeArticle
prism.issueIdentifier8en
prism.publicationDate2021en
prism.publicationNameProceedings of the National Academy of Sciences of the United States of Americaen
prism.volume118en
dc.identifier.doi10.17863/CAM.63216
dcterms.dateAccepted2021-01-07en
rioxxterms.versionofrecord10.1073/pnas.2021012118en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2021-02en
dc.contributor.orcidSpikes, Tobias [0000-0002-2432-8006]
dc.contributor.orcidMontgomery, Martin [0000-0001-6142-9423]
dc.contributor.orcidWalker, John [0000-0001-7929-2162]
dc.identifier.eissn1091-6490
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idWELLCOME TRUST (202905/Z/16/Z)
pubs.funder-project-idMRC (MC_EX_MR/M009858/1)
pubs.funder-project-idWellcome Trust (206171/Z/17/Z)
pubs.funder-project-idMRC (MC_U105663150)
pubs.funder-project-idMRC (MC_UU_00015/8)
cam.orpheus.successMon Feb 08 07:30:46 GMT 2021 - Embargo updated*
cam.orpheus.counter2*
rioxxterms.freetoread.startdate2021-08-04


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record